summaryrefslogtreecommitdiff
path: root/simulator/opendc-compute/opendc-compute-simulator/src/main
diff options
context:
space:
mode:
authorFabian Mastenbroek <mail.fabianm@gmail.com>2021-03-17 16:51:38 +0100
committerGitHub <noreply@github.com>2021-03-17 16:51:38 +0100
commit054a3d376b8b31ba98f91e7b34c6e0ca717def18 (patch)
treeee739cf4092a2b807e0043bed7cae72cff7b6bac /simulator/opendc-compute/opendc-compute-simulator/src/main
parentdf2f52780c08c5d108741d3746eaf03222c64841 (diff)
parentbb3b8e207a08edff81b8c2fe30b476c94bfea086 (diff)
Add uniform resource consumption model (v1)
This is the first in the series of pull requests to add a uniform resource consumption model to OpenDC. This pull request introduces the `opendc-simulator-resources` module which introduces the primitives with which we can model resource consumption of CPUs, disks and network: * `SimResourceProvider` represents a provider of some generic resource `R`, which may be consumed via `consume(SimResourceConsumer<R>)` * `SimResourceConsumer` represents a resource consumers and characterizes how the resource is being consumed. * `SimResourceSwitch` is a generic scheduler for sharing the capacity of multiple resources across multiple consumers. - `SimResourceSwitchExclusive`: A space-shared switch - each consumer is allocated a single resource exclusively. - `SimResourceSwitchMinMax`: A time-shared switch - each consumer gets a fair share of the resource capacity. * `SimResourceForwarder` converts a consumer in a provider. **Breaking Changes** * `ProcessingUnit` and `MemoryUnit` renamed to `SimProcessingUnit` and `SimMemoryUnit` respectively. * `TimerScheduler` accepts a `CoroutineContext` as opposed to a `CoroutineScope`.
Diffstat (limited to 'simulator/opendc-compute/opendc-compute-simulator/src/main')
-rw-r--r--simulator/opendc-compute/opendc-compute-simulator/src/main/kotlin/org/opendc/compute/simulator/SimHost.kt7
1 files changed, 4 insertions, 3 deletions
diff --git a/simulator/opendc-compute/opendc-compute-simulator/src/main/kotlin/org/opendc/compute/simulator/SimHost.kt b/simulator/opendc-compute/opendc-compute-simulator/src/main/kotlin/org/opendc/compute/simulator/SimHost.kt
index 19fa3e97..9cc1bf54 100644
--- a/simulator/opendc-compute/opendc-compute-simulator/src/main/kotlin/org/opendc/compute/simulator/SimHost.kt
+++ b/simulator/opendc-compute/opendc-compute-simulator/src/main/kotlin/org/opendc/compute/simulator/SimHost.kt
@@ -35,7 +35,7 @@ import org.opendc.compute.simulator.power.models.ConstantPowerModel
import org.opendc.simulator.compute.*
import org.opendc.simulator.compute.interference.IMAGE_PERF_INTERFERENCE_MODEL
import org.opendc.simulator.compute.interference.PerformanceInterferenceModel
-import org.opendc.simulator.compute.model.MemoryUnit
+import org.opendc.simulator.compute.model.SimMemoryUnit
import org.opendc.simulator.failures.FailureDomain
import org.opendc.utils.flow.EventFlow
import java.time.Clock
@@ -84,7 +84,7 @@ public class SimHost(
/**
* The machine to run on.
*/
- public val machine: SimBareMetalMachine = SimBareMetalMachine(scope, clock, model)
+ public val machine: SimBareMetalMachine = SimBareMetalMachine(context, clock, model)
/**
* The hypervisor to run multiple workloads.
@@ -206,6 +206,7 @@ public class SimHost(
override fun close() {
scope.cancel()
+ machine.close()
_state = HostState.DOWN
}
@@ -216,7 +217,7 @@ public class SimHost(
val originalCpu = machine.model.cpus[0]
val processingNode = originalCpu.node.copy(coreCount = cpuCount)
val processingUnits = (0 until cpuCount).map { originalCpu.copy(id = it, node = processingNode) }
- val memoryUnits = listOf(MemoryUnit("Generic", "Generic", 3200.0, memorySize))
+ val memoryUnits = listOf(SimMemoryUnit("Generic", "Generic", 3200.0, memorySize))
return SimMachineModel(processingUnits, memoryUnits)
}