| Age | Commit message (Collapse) | Author |
|
* Removed unused components. Updated tests.
Improved checkpointing model
Improved model, started with SimPowerSource
implemented FailureModels and Checkpointing
First working version
midway commit
first update
All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability.
* fixed merge conflicts
* Updated M3SA paths.
* Fixed small typo
|
|
* Updated all package versions including kotlin. Updated all web-server tests to run.
* Changed the java version of the tests. OpenDC now only supports java 19.
* small update
* test update
* new update
* updated docker version to 19
* updated docker version to 19
|
|
This change removes the use of a Spy object from the TestInlet class.
Since the Spy is not actually used in our tests, we remove it due to the
high initialization cost.
|
|
This change replaces the use of `CoroutineContext` for passing the
`SimulationDispatcher` across the different modules of OpenDC by the
lightweight `Dispatcher` interface of the OpenDC common module.
|
|
This change updates the `SimulationScheduler` class to implement the
`Dispatcher` interface from the OpenDC Common module, so that OpenDC
modules only need to depend on the common module for dispatching future
task (possibly in simulation).
|
|
This change re-implements the OpenDC compute simulator framework using
the new flow2 framework for modelling multi-edge flow networks. The
re-implementation is written in Java and focusses on performance and
clean API surface.
|
|
This change updates the `opendc-simulator-power` module to use the new
flow simulation framework in OpenDC (named flow2 for now).
|
|
This change updates the build configuration to use Spotless for code
formating of both Kotlin and Java.
|
|
This change updates the repository to remove the use of wildcard imports
everywhere. Wildcard imports are not allowed by default by Ktlint as
well as Google's Java style guide.
|
|
This change renames the method `runBlockingSimulation` to
`runSimulation` to put more emphasis on the simulation part of the
method. The blocking part is not that important, but this behavior is
still described in the method documentation.
|
|
This change updates the implementation of `SimulationDispatcher` to use
a (possibly user-provided) `SimulationScheduler` for managing the
execution of the simulation and future tasks.
|
|
This change updates the Gradle build configuration to ensure that all
library modules (that will be published) use testing and are included in
coverage reports. This should ensure the public modules remain well
tested.
|
|
This change removes the delta parameter from the callbacks of the flow
framework. This parameter was used to indicate the duration in time
between the last call and the current call. However, its usefulness was
limited since the actual delta values needed by implementors of this
method had to be bridged across different flow callbacks.
|
|
This change removes the opendc-platform module from the project. This
module represented a Java platform which was previously used for sharing
a set of dependency versions between subprojects. However, with the
version catalogue that was added by Gradle, we currently do not use the
platform anymore.
|
|
This change adds a new interface to the SimHypervisor interface that
exposes the CPU time counters directly. These are derived from the flow
counters and will be used by SimHost to expose them via telemetry.
|
|
This change fixes the loss computation for both the UPS and PDU
implementation that was broken due to the new pushing mechanism. We
implement a new class FlowMapper that can be used to map the flow pushed
by a `FlowSource` using a user-specified method.
|
|
This change creates separate callbacks for the remaining events:
onStart, onStop and onConverge.
|
|
This change removes the `onFailure` method from FlowSource. Instead, the
FlowConsumer will receive the reason for failure of the source.
|
|
This change separates the push and pull flags in
FlowConsumerContextImpl, meaning that sources can now push directly
without pulling and vice versa.
|
|
This change renames the `opendc-simulator-resources` module into the
`opendc-simulator-flow` module to indicate that the core simulation
model of OpenDC is based around modelling and simulating flows.
Previously, the distinction between resource consumer and provider, and
input and output caused some confusion. By switching to a flow-based
model, this distinction is now clear (as in, the water flows from source
to consumer/sink).
|
|
This change removes the ability to transform the duration of a pull from
the SimResourceForwarder class. This ability is not used anymore, since
pushes are now done using a method instead of a command.
|
|
This change removes the distributor and aggregator interfaces in favour
of a single switch interface. Since the switch interface is as powerful
as both the distributor and aggregator, we don't need the latter two.
|
|
This change removes the use of distributor and aggregator from the other
OpenDC components. For the future, we focus on maintaining a single
SimResourceSwitch implementation to achieve both use-cases.
|
|
This change adds a new method to `SimResourceContext` called `push`
which allows users to change the requested flow rate directly without
having to interrupt the consumer.
|
|
This change removes the work and deadline properties from the
SimResourceCommand.Consume class and introduces a new property duration.
This property is now used in conjunction with the limit to compute the amount
of work processed by a resource provider.
Previously, we used both work and deadline to compute the duration and
the amount of remaining work at the end of a consumption. However, with
this change, we ensure that a resource consumption always runs at the
same speed once establishing, drastically simplifying the computation
for the amount of work processed during the consumption.
|
|
This change removes the AutoCloseable interface from the
SimResourceProvider and removes the concept of a resource lifecycle.
Instead, resource providers are now either active (running a resource
consumer) or in-active (being idle), which simplifies implementation.
|
|
This change adds a new model for the UPS to the OpenDC simulator power
subsystem.
|
|
This change adds a model for power loss to the Power Distribution Unit
(PDU) model in OpenDC.
|
|
This change adds a new module for simulating power components in
datacenters such as PDUs and UPSes. This module will serve as the basis
for the power monitoring framework in OpenDC and will future integrate
with the other simulation components (such as compute).
|