summaryrefslogtreecommitdiff
path: root/opendc-experiments/opendc-experiments-m3sa/src/main/python/models
diff options
context:
space:
mode:
Diffstat (limited to 'opendc-experiments/opendc-experiments-m3sa/src/main/python/models')
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/Model.py70
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py501
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/__init__.py3
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/meta_model.py (renamed from opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MetaModel.py)142
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/model.py32
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/multi_model.py410
6 files changed, 495 insertions, 663 deletions
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/Model.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/Model.py
deleted file mode 100644
index f60f0bb0..00000000
--- a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/Model.py
+++ /dev/null
@@ -1,70 +0,0 @@
-"""
-A model is the output of simulator. It contains the data the simulator output, under a certain topology, seed,
-workload, datacenter configuration, etc. A model is further used in the analyzer as part of the MultiModel class,
-and further in the MetaModel class.
-
-:param sim: the simulation data of the model
-"""
-import json
-from dataclasses import dataclass, field
-
-@dataclass
-class Model:
- """
- Represents a single simulation output containing various data metrics collected under specific simulation conditions.
- A Model object stores raw and processed simulation data and is designed to interact with higher-level structures like
- MultiModel and MetaModel for complex data analysis.
-
- Attributes:
- raw_sim_data (list): Initial raw data from the simulator output.
- processed_sim_data (list): Data derived from raw_sim_data after applying certain processing operations like aggregation or smoothing.
- cumulative_time_series_values (list): Stores cumulative data values useful for time series analysis.
- id (int): Unique identifier for the model, typically used for tracking and referencing within analysis tools.
- path (str): Base path for storing or accessing related data files.
- cumulated (float): Cumulative sum of processed data, useful for quick summaries and statistical analysis.
- experiment_name (str): A descriptive name for the experiment associated with this model, potentially extracted from external metadata.
- margins_of_error (list): Stores error margins associated with the data, useful for uncertainty analysis.
- topologies (list): Describes the network or system topologies used during the simulation.
- workloads (list): Lists the types of workloads applied during the simulation, affecting the simulation's applicability and scope.
- allocation_policies (list): Details the resource allocation policies used, which influence the simulation outcomes.
- carbon_trace_paths (list): Paths to data files containing carbon output or usage data, important for environmental impact studies.
-
- Methods:
- parse_trackr(): Reads additional configuration and metadata from a JSON file named 'trackr.json', enhancing the model with detailed context information.
-
- Usage:
- Model objects are typically instantiated with raw data from simulation outputs and an identifier. After instantiation,
- the 'parse_trackr' method can be called to load additional experimental details from a corresponding JSON file.
- """
-
- path: str
- raw_sim_data: list
- id: int
- processed_sim_data: list = field(default_factory=list)
- cumulative_time_series_values: list = field(default_factory=list)
- cumulated: float = 0.0
- experiment_name: str = ""
- margins_of_error: list = field(default_factory=list)
- topologies: list = field(default_factory=list)
- workloads: list = field(default_factory=list)
- allocation_policies: list = field(default_factory=list)
- carbon_trace_paths: list = field(default_factory=list)
-
- def parse_trackr(self):
- """
- Parses the 'trackr.json' file located in the model's base path to extract and store detailed experimental metadata.
- This method enhances the model with comprehensive contextual information about the simulation environment.
-
- :return: None
- :side effect: Updates model attributes with data from the 'trackr.json' file, such as experiment names, topologies, and policies.
- :raises FileNotFoundError: If the 'trackr.json' file does not exist at the specified path.
- :raises json.JSONDecodeError: If there is an error parsing the JSON data.
- """
- trackr_path = self.path + "/trackr.json"
- with open(trackr_path) as f:
- trackr = json.load(f)
- self.experiment_name = trackr.get(self.id, {}).get('name', "")
- self.topologies = trackr.get(self.id, {}).get('topologies', [])
- self.workloads = trackr.get(self.id, {}).get('workloads', [])
- self.allocation_policies = trackr.get(self.id, {}).get('allocationPolicies', [])
- self.carbon_trace_paths = trackr.get(self.id, {}).get('carbonTracePaths', [])
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
deleted file mode 100644
index 17a92765..00000000
--- a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
+++ /dev/null
@@ -1,501 +0,0 @@
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import pyarrow.parquet as pq
-import time
-from matplotlib.ticker import MaxNLocator, FuncFormatter
-
-from simulator_specifics import *
-from .MetaModel import MetaModel
-from .Model import Model
-
-
-def is_meta_model(model):
- """
- Check if the given model is a MetaModel based on its ID. A metamodel will always have an id of -101.
-
- Args:
- model (Model): The model to check.
-
- Returns:
- bool: True if model is MetaModel, False otherwise.
- """
- return model.id == MetaModel.META_MODEL_ID
-
-
-class MultiModel:
- """
- Handles multiple simulation models, aggregates their data based on user-defined parameters,
- and generates plots and statistics.
-
- Attributes:
- user_input (dict): Configuration dictionary containing user settings for model processing.
- path (str): The base directory path where output files and analysis results are stored.
- window_size (int): The size of the window for data aggregation, which affects how data smoothing and granularity are handled.
- models (list of Model): A list of Model instances that store the simulation data.
- metric (str): The specific metric to be analyzed and plotted, as defined by the user.
- measure_unit (str): The unit of measurement for the simulation data, adjusted according to the user's specifications.
- output_folder_path (str): Path to the folder where output files are saved.
- raw_output_path (str): Directory path where raw simulation data is stored.
- analysis_file_path (str): Path to the file where detailed analysis results are recorded.
- plot_type (str): The type of plot to generate, which can be 'time_series', 'cumulative', or 'cumulative_time_series'.
- plot_title (str): The title of the plot.
- x_label (str), y_label (str): Labels for the x and y axes of the plot.
- x_min (float), x_max (float), y_min (float), y_max (float): Optional parameters to define axis limits for the plots.
-
- Methods:
- parse_user_input(window_size): Parses and sets the class attributes based on the provided user input.
- adjust_unit(): Adjusts the unit of measurement based on user settings, applying appropriate metric prefixes.
- set_paths(): Initializes the directory paths for storing outputs and analysis results.
- init_models(): Reads simulation data from Parquet files and initializes Model instances.
- compute_windowed_aggregation(): Processes the raw data by applying a windowed aggregation function for smoothing.
- generate_plot(): Orchestrates the generation of the specified plot type by calling the respective plotting functions.
- generate_time_series_plot(): Generates a time series plot of the aggregated data.
- generate_cumulative_plot(): Creates a bar chart showing cumulative data for each model.
- generate_cumulative_time_series_plot(): Produces a plot that displays cumulative data over time for each model.
- save_plot(): Saves the generated plot to a PDF file in the specified directory.
- output_stats(): Writes detailed statistics of the simulation to an analysis file for record-keeping.
- mean_of_chunks(np_array, window_size): Calculates the mean of data segments for smoothing and processing.
- get_cumulative_limits(model_sums): Determines appropriate x-axis limits for cumulative plots based on the model data.
-
- Usage:
- To use this class, instantiate it with a dictionary of user settings, a path for outputs, and optionally a window size.
- Call the `generate_plot` method to process the data and generate plots as configured by the user.
- """
-
- def __init__(self, user_input, path, window_size=-1):
- """
- Initializes the MultiModel with provided user settings and prepares the environment.
-
- :param user_input (dict): Configurations and settings from the user.
- :param path (str): Path where output and analysis will be stored.
- :param window_size (int): The size of the window to aggregate data; uses user input if -1.
- :return: None
- """
-
- self.starting_time = time.time()
- self.end_time = None
- self.workload_time = None
-
- self.user_input = user_input
-
- self.metric = None
- self.measure_unit = None
- self.path = path
- self.models = []
-
- self.folder_path = None
- self.output_folder_path = None
- self.raw_output_path = None
- self.analysis_file_path = None
- self.unit_scaling = 1
- self.window_size = -1
- self.window_function = "median"
- self.max_model_len = 0
- self.seed = 0
-
- self.plot_type = None
- self.plot_title = None
- self.x_label = None
- self.y_label = None
- self.x_min = None
- self.x_max = None
- self.y_min = None
- self.y_max = None
- self.plot_path = None
-
- self.parse_user_input(window_size)
- self.set_paths()
- self.init_models()
-
- self.compute_windowed_aggregation()
-
- def parse_user_input(self, window_size):
- """
- Parses and sets attributes based on user input.
-
- :param window_size (int): Specified window size for data aggregation, defaults to user_input if -1.
- :return: None
- """
- if window_size == -1:
- self.window_size = self.user_input["window_size"]
- else:
- self.window_size = window_size
- self.metric = self.user_input["metric"]
- self.measure_unit = self.adjust_unit()
- self.window_function = self.user_input["window_function"]
- self.seed = self.user_input["seed"]
-
- self.plot_type = self.user_input["plot_type"]
- self.plot_title = self.user_input["plot_title"]
- if self.user_input["x_label"] == "":
- self.x_label = "Samples"
- else:
- self.x_label = self.user_input["x_label"]
-
- if self.user_input["y_label"] == "":
- self.y_label = self.metric + " [" + self.measure_unit + "]"
- else:
- self.y_label = self.user_input["y_label"]
-
- self.y_min = self.user_input["y_min"]
- self.y_max = self.user_input["y_max"]
- self.x_min = self.user_input["x_min"]
- self.x_max = self.user_input["x_max"]
-
- def adjust_unit(self):
- """
- Adjusts the unit of measurement according to the scaling magnitude specified by the user.
- This method translates the given measurement scale into a scientifically accepted metric prefix.
-
- :return str: The metric prefixed by the appropriate scale (e.g., 'kWh' for kilo-watt-hour if the scale is 3).
- :raise ValueError: If the unit scaling magnitude provided by the user is not within the accepted range of scaling factors.
- """
- prefixes = ['n', 'μ', 'm', '', 'k', 'M', 'G', 'T']
- scaling_factors = [-9, -6, -3, 1, 3, 6, 9]
- given_metric = self.user_input["current_unit"]
- self.unit_scaling = self.user_input["unit_scaling_magnitude"]
-
- if self.unit_scaling not in scaling_factors:
- raise ValueError(
- "Unit scaling factor not found. Please enter a valid unit from [-9, -6, -3, 1, 3, 6, 9].")
-
- if self.unit_scaling == 1:
- return given_metric
-
- for i in range(len(scaling_factors)):
- if self.unit_scaling == scaling_factors[i]:
- self.unit_scaling = 10 ** self.unit_scaling
- result = prefixes[i] + given_metric
- return result
-
- def set_paths(self):
- """
- Configures and initializes the directory paths for output and analysis based on the base directory provided.
- This method sets paths for the raw output and detailed analysis results, ensuring directories are created if
- they do not already exist, and prepares a base file for capturing analytical summaries.
-
- :return: None
- :side effect: Creates necessary directories and files for output and analysis.
- """
- self.output_folder_path = os.getcwd() + "/" + self.path
- self.raw_output_path = os.getcwd() + "/" + self.path + "/raw-output"
- self.analysis_file_path = os.getcwd() + "/" + self.path + "/simulation-analysis/"
- os.makedirs(self.analysis_file_path, exist_ok=True)
- self.analysis_file_path = os.path.join(self.analysis_file_path, "analysis.txt")
- if not os.path.exists(self.analysis_file_path):
- with open(self.analysis_file_path, "w") as f:
- f.write("Analysis file created.\n")
-
- def init_models(self):
- """
- Initializes models from the simulation output stored in Parquet files. This method reads each Parquet file,
- processes the relevant data, and initializes Model instances which are stored in the model list.
-
- :return: None
- :raise ValueError: If the unit scaling has not been set prior to model initialization.
- """
- model_id = 0
-
- for simulation_folder in os.listdir(self.raw_output_path):
- if simulation_folder == "metamodel":
- continue
- path_of_parquet_file = f"{self.raw_output_path}/{simulation_folder}/seed={self.seed}/{SIMULATION_DATA_FILE}.parquet"
- parquet_file = pq.read_table(path_of_parquet_file).to_pandas()
- raw = parquet_file.select_dtypes(include=[np.number]).groupby("timestamp")
- raw = raw[self.metric].sum().values
-
- if self.unit_scaling is None:
- raise ValueError("Unit scaling factor is not set. Please ensure it is set correctly.")
-
- raw = np.divide(raw, self.unit_scaling)
-
- if self.user_input["samples_per_minute"] > 0:
- MINUTES_IN_DAY = 1440
- self.workload_time = len(raw) * self.user_input["samples_per_minute"] / MINUTES_IN_DAY
-
- model = Model(raw_sim_data=raw, id=model_id, path=self.output_folder_path)
- self.models.append(model)
- model_id += 1
-
- self.max_model_len = min([len(model.raw_sim_data) for model in self.models])
-
- def compute_windowed_aggregation(self):
- """
- Applies a windowed aggregation function to each model's dataset. This method is typically used for smoothing
- or reducing data granularity. It involves segmenting the dataset into windows of specified size and applying
- an aggregation function to each segment.
-
- :return: None
- :side effect: Modifies each model's processed_sim_data attribute to contain aggregated data.
- """
- if self.plot_type != "cumulative":
- for model in self.models:
- numeric_values = model.raw_sim_data
- model.processed_sim_data = self.mean_of_chunks(numeric_values, self.window_size)
-
- def generate_plot(self):
- """
- Creates and saves plots based on the processed data from multiple models. This method determines
- the type of plot to generate based on user input and invokes the appropriate plotting function.
-
- The plotting options supported are 'time_series', 'cumulative', and 'cumulative_time_series'.
- Depending on the type specified, this method delegates to specific plot-generating functions.
-
- :return: None
- :raises ValueError: If the plot type specified is not recognized or supported by the system.
- :side effect:
- - Generates and saves a plot to the file system.
- - Updates the plot attributes based on the generated plot.
- - Displays the plot on the matplotlib figure canvas.
- """
- plt.figure(figsize=(12, 10))
- plt.xticks(size=22)
- plt.yticks(size=22)
- plt.ylabel(self.y_label, size=26)
- plt.xlabel(self.x_label, size=26)
- plt.title(self.plot_title, size=26)
- plt.grid()
-
- formatter = FuncFormatter(lambda x, _: '{:,}'.format(int(x)) if x >= 1000 else int(x))
- ax = plt.gca()
- ax.xaxis.set_major_formatter(formatter)
- # ax.yaxis.set_major_formatter(formatter) yaxis has formatting issues - to solve in a future iteration
-
- if self.user_input['x_ticks_count'] is not None:
- ax = plt.gca()
- ax.xaxis.set_major_locator(MaxNLocator(self.user_input['x_ticks_count']))
-
- if self.user_input['y_ticks_count'] is not None:
- ax = plt.gca()
- ax.yaxis.set_major_locator(MaxNLocator(self.user_input['y_ticks_count']))
-
- self.set_x_axis_lim()
- self.set_y_axis_lim()
-
- if self.plot_type == "time_series":
- self.generate_time_series_plot()
- elif self.plot_type == "cumulative":
- self.generate_cumulative_plot()
- elif self.plot_type == "cumulative_time_series":
- self.generate_cumulative_time_series_plot()
- else:
- raise ValueError(
- "Plot type not recognized. Please enter a valid plot type. The plot can be either "
- "'time_series', 'cumulative', or 'cumulative_time_series'."
- )
-
- plt.tight_layout()
- plt.subplots_adjust(right=0.85)
- plt.legend(fontsize=12, bbox_to_anchor=(1, 1))
- self.save_plot()
- self.output_stats()
-
- def generate_time_series_plot(self):
- """
- Plots time series data for each model. This function iterates over each model, applies the defined
- windowing function to smooth the data, and plots the resulting series.
-
- :return: None
- :side effect: Plots are displayed on the matplotlib figure canvas.
- """
- for model in self.models:
- label = "Meta-Model" if is_meta_model(model) else "Model " + str(model.id)
- if is_meta_model(model):
- repeated_means = np.repeat(means, self.window_size)[:len(model.processed_sim_data) * self.window_size]
- plt.plot(
- repeated_means,
- drawstyle='steps-mid',
- label=label,
- color="red",
- linestyle="--",
- marker="o",
- markevery=max(1, len(repeated_means) // 50),
- linewidth=2
- )
- else:
- means = self.mean_of_chunks(model.raw_sim_data, self.window_size)
- repeated_means = np.repeat(means, self.window_size)[:len(model.raw_sim_data)]
- plt.plot(repeated_means, drawstyle='steps-mid', label=label)
-
- def generate_cumulative_plot(self):
- """
- Generates a horizontal bar chart showing cumulative data for each model. This function
- aggregates total values per model and displays them in a bar chart, providing a visual
- comparison of total values across models.
-
- :return: None
- :side effect: Plots are displayed on the matplotlib figure canvas.
- """
- plt.xlim(self.get_cumulative_limits(model_sums=self.sum_models_entries()))
- plt.ylabel("Model ID", size=20)
- plt.xlabel("Total " + self.metric + " [" + self.measure_unit + "]")
- plt.yticks(range(len(self.models)), [model.id for model in self.models])
- plt.grid(False)
-
- cumulated_energies = self.sum_models_entries()
- for i, model in enumerate(self.models):
- label = "Meta-Model" if is_meta_model(model) else "Model " + str(model.id)
- if is_meta_model(model):
- plt.barh(label=label, y=i, width=cumulated_energies[i], color="red")
- else:
- plt.barh(label=label, y=i, width=cumulated_energies[i])
- plt.text(cumulated_energies[i], i, str(cumulated_energies[i]), ha='left', va='center', size=26)
-
- def generate_cumulative_time_series_plot(self):
- """
- Generates a plot showing the cumulative data over time for each model. This visual representation is
- useful for analyzing trends and the accumulation of values over time.
-
- :return: None
- :side effect: Displays the cumulative data over time on the matplotlib figure canvas.
- """
- self.compute_cumulative_time_series()
-
- for model in self.models:
- if is_meta_model(model):
- cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
- :len(model.processed_sim_data) * self.window_size]
- plt.plot(
- cumulative_repeated,
- drawstyle='steps-mid',
- label=("Meta-Model"),
- color="red",
- linestyle="--",
- marker="o",
- markevery=max(1, len(cumulative_repeated) // 10),
- linewidth=3
- )
- else:
- cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
- :len(model.raw_sim_data)]
- plt.plot(cumulative_repeated, drawstyle='steps-mid', label=("Model " + str(model.id)))
-
- def compute_cumulative_time_series(self):
- """
- Computes the cumulative sum of processed data over time for each model, storing the result for use in plotting.
-
- :return: None
- :side effect: Updates each model's 'cumulative_time_series_values' attribute with the cumulative sums.
- """
- for model in self.models:
- cumulative_array = []
- _sum = 0
- for value in model.processed_sim_data:
- _sum += value
- cumulative_array.append(_sum * self.window_size)
- model.cumulative_time_series_values = cumulative_array
-
- def save_plot(self):
- """
- Saves the current plot to a PDF file in the specified directory, constructing the file path from the
- plot attributes and ensuring that the directory exists before saving.
-
- :return: None
- :side effect: Creates or overwrites a PDF file containing the plot in the designated folder.
- """
- folder_prefix = self.output_folder_path + "/simulation-analysis/" + self.metric + "/"
- self.plot_path = folder_prefix + self.plot_type + "_plot_multimodel_metric=" + self.metric + "_window=" + str(
- self.window_size) + ".pdf"
- plt.savefig(self.plot_path)
-
- def set_x_axis_lim(self):
- """
- Sets the x-axis limits for the plot based on user-defined minimum and maximum values. If values
- are not specified, the axis limits will default to encompassing all data points.
-
- :return: None
- :side effect: Adjusts the x-axis limits of the current matplotlib plot.
- """
- if self.x_min is not None:
- plt.xlim(left=self.x_min)
-
- if self.x_max is not None:
- plt.xlim(right=self.x_max)
-
- def set_y_axis_lim(self):
- """
- Dynamically sets the y-axis limits to be slightly larger than the range of the data, enhancing
- the readability of the plot by ensuring all data points are comfortably within the view.
-
- :return: None
- :side effect: Adjusts the y-axis limits of the current matplotlib plot.
- """
- if self.y_min is not None:
- plt.ylim(bottom=self.y_min)
- if self.y_max is not None:
- plt.ylim(top=self.y_max)
-
- def sum_models_entries(self):
- """
- Computes the total values from each model for use in cumulative plotting. This method aggregates
- the data across all models and prepares it for cumulative display.
-
- :return: List of summed values for each model, useful for plotting and analysis.
- """
- models_sums = []
- for (i, model) in enumerate(self.models):
- if is_meta_model(model):
- models_sums.append(model.cumulated)
- else:
- cumulated_energy = model.raw_sim_data.sum()
- cumulated_energy = round(cumulated_energy, 2)
- models_sums.append(cumulated_energy)
-
- return models_sums
-
- def output_stats(self):
- """
- Records and writes detailed simulation statistics to an analysis file. This includes time stamps,
- performance metrics, and other relevant details.
-
- :return: None
- :side effect: Appends detailed simulation statistics to an existing file for record-keeping and analysis.
- """
- self.end_time = time.time()
- with open(self.analysis_file_path, "a") as f:
- f.write("\n\n========================================\n")
- f.write("Simulation made at " + time.strftime("%Y-%m-%d %H:%M:%S") + "\n")
- f.write("Metric: " + self.metric + "\n")
- f.write("Unit: " + self.measure_unit + "\n")
- f.write("Window size: " + str(self.window_size) + "\n")
- f.write("Sample count in raw sim data: " + str(self.max_model_len) + "\n")
- f.write("Computing time " + str(round(self.end_time - self.starting_time, 1)) + "s\n")
- if (self.user_input["samples_per_minute"] > 0):
- f.write("Workload time: " + str(round(self.workload_time, 2)) + " days\n")
- f.write("Plot path" + self.plot_path + "\n")
- f.write("========================================\n")
-
- def mean_of_chunks(self, np_array, window_size):
- """
- Calculates the mean of data within each chunk for a given array. This method helps in smoothing the data by
- averaging over specified 'window_size' segments.
-
- :param np_array (np.array): Array of numerical data to be chunked and averaged.
- :param window_size (int): The size of each segment to average over.
- :return: np.array: An array of mean values for each chunk.
- :side effect: None
- """
- if window_size == 1:
- return np_array
-
- chunks = [np_array[i:i + window_size] for i in range(0, len(np_array), window_size)]
- means = [np.mean(chunk) for chunk in chunks]
- return np.array(means)
-
- def get_cumulative_limits(self, model_sums):
- """
- Calculates the appropriate x-axis limits for cumulative plots based on the summarized data from each model.
-
- :param model_sums (list of float): The total values for each model.
- :return: tuple: A tuple containing the minimum and maximum x-axis limits.
- """
- axis_min = min(model_sums) * 0.9
- axis_max = max(model_sums) * 1.1
-
- if self.user_input["x_min"] is not None:
- axis_min = self.user_input["x_min"]
- if self.user_input["x_max"] is not None:
- axis_max = self.user_input["x_max"]
-
- return [axis_min * 0.9, axis_max * 1.1]
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/__init__.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/__init__.py
new file mode 100644
index 00000000..e2d5aaee
--- /dev/null
+++ b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/__init__.py
@@ -0,0 +1,3 @@
+from .model import Model
+from .multi_model import MultiModel
+from .meta_model import MetaModel
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MetaModel.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/meta_model.py
index 49930d25..a6d0fded 100644
--- a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MetaModel.py
+++ b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/meta_model.py
@@ -1,8 +1,8 @@
-import numpy as np
import os
import pandas as pd
-
-from .Model import Model
+from models import Model, MultiModel
+from typing import Callable
+from util import PlotType
class MetaModel:
@@ -20,43 +20,32 @@ class MetaModel:
function_map (dict): Mapping of aggregation function names to function implementations.
"""
- META_MODEL_ID = -101
+ META_MODEL_ID = 'M'
- def __init__(self, multimodel, meta_function=None):
+ def __init__(self, multi_model: MultiModel, meta_function: Callable[[any], float] = None):
"""
Initializes the Metamodel with a MultiModel instance and prepares aggregation functions based on configuration.
- :param multimodel: MultiModel instance containing the models to aggregate.
+ :param multi_model: MultiModel instance containing the models to aggregate.
:raise ValueError: If metamodel functionality is not enabled in the configuration.
"""
- if not multimodel.user_input.get('metamodel', False):
+ if not multi_model.config.is_metamodel:
raise ValueError("Metamodel is not enabled in the config file")
- self.function_map = {
- 'mean': self.mean,
- 'median': self.median,
- 'meta_equation1': self.meta_equation1,
- }
-
- self.multi_model = multimodel
- self.meta_model = Model(
+ self.multi_model = multi_model
+ self.meta_model: Model = Model(
raw_sim_data=[],
- id=self.META_MODEL_ID,
- path=self.multi_model.output_folder_path
+ identifier=self.META_MODEL_ID,
)
- if meta_function is not None:
- self.meta_function = meta_function
- else:
- self.meta_function = self.function_map.get(multimodel.user_input['meta_function'], self.mean)
+ self.meta_function: Callable[
+ [any], float] = self.multi_model.config.meta_function if meta_function is None else meta_function
self.min_raw_model_len = min([len(model.raw_sim_data) for model in self.multi_model.models])
self.min_processed_model_len = min([len(model.processed_sim_data) for model in self.multi_model.models])
self.number_of_models = len(self.multi_model.models)
- self.compute()
- self.output()
- def output(self):
+ def output(self) -> None:
"""
Generates outputs by plotting the aggregated results and exporting the metamodel data to a file.
:return: None
@@ -65,34 +54,32 @@ class MetaModel:
self.plot()
self.output_metamodel()
- def compute(self):
+ def compute(self) -> None:
"""
Computes aggregated data based on the specified plot type from the configuration.
:raise ValueError: If an unsupported plot type is specified in the configuration.
"""
- if self.multi_model.plot_type == 'time_series':
- self.compute_time_series()
- elif self.multi_model.plot_type == 'cumulative':
- self.compute_cumulative()
- elif self.multi_model.plot_type == 'cumulative_time_series':
- self.compute_cumulative_time_series()
- else:
- raise ValueError("Invalid plot type in config file")
+ match self.multi_model.config.plot_type:
+ case PlotType.TIME_SERIES:
+ self.compute_time_series()
+ case PlotType.CUMULATIVE:
+ self.compute_cumulative()
+ case PlotType.CUMULATIVE_TIME_SERIES:
+ self.compute_cumulative_time_series()
- def plot(self):
+ def plot(self) -> None:
"""
Plots the aggregated data according to the specified plot type from the configuration.
:raise ValueError: If an unsupported plot type is specified.
"""
- if self.multi_model.plot_type == 'time_series':
- self.plot_time_series()
- elif self.multi_model.plot_type == 'cumulative':
- self.plot_cumulative()
- elif self.multi_model.plot_type == 'cumulative_time_series':
- self.plot_cumulative_time_series()
- else:
- raise ValueError("Invalid plot type in config file")
+ match self.multi_model.config.plot_type:
+ case PlotType.TIME_SERIES:
+ self.plot_time_series()
+ case PlotType.CUMULATIVE:
+ self.plot_cumulative()
+ case PlotType.CUMULATIVE_TIME_SERIES:
+ self.plot_cumulative_time_series()
def compute_time_series(self):
"""
@@ -102,8 +89,8 @@ class MetaModel:
"""
for i in range(0, self.min_processed_model_len):
data_entries = []
- for j in range(self.number_of_models):
- data_entries.append(self.multi_model.models[j].processed_sim_data[i])
+ for model in self.multi_model.models:
+ data_entries.append(model.processed_sim_data[i])
self.meta_model.processed_sim_data.append(self.meta_function(data_entries))
self.meta_model.raw_sim_data = self.meta_model.processed_sim_data
@@ -122,14 +109,14 @@ class MetaModel:
:return: None
:side effect: Updates the meta_model's cumulative data with aggregated results.
"""
-
for i in range(0, self.min_raw_model_len):
data_entries = []
- for j in range(self.number_of_models):
- sim_data = self.multi_model.models[j].raw_sim_data
+ for model in self.multi_model.models:
+ sim_data = model.raw_sim_data
ith_element = sim_data[i]
data_entries.append(ith_element)
- self.meta_model.cumulated += self.mean(data_entries)
+ self.meta_model.cumulated += self.meta_function(data_entries)
+
self.meta_model.cumulated = round(self.meta_model.cumulated, 2)
def plot_cumulative(self):
@@ -149,8 +136,8 @@ class MetaModel:
"""
for i in range(0, self.min_processed_model_len):
data_entries = []
- for j in range(self.number_of_models):
- data_entries.append(self.multi_model.models[j].processed_sim_data[i])
+ for model in self.multi_model.models:
+ data_entries.append(model.processed_sim_data[i])
self.meta_model.processed_sim_data.append(self.meta_function(data_entries))
def plot_cumulative_time_series(self):
@@ -168,47 +155,18 @@ class MetaModel:
:return: None
:side effect: Writes data to a parquet file at the specified directory path.
"""
- directory_path = os.path.join(self.multi_model.output_folder_path, "raw-output/metamodel/seed=0")
- os.makedirs(directory_path, exist_ok=True)
- current_path = os.path.join(directory_path, f"{self.multi_model.metric}.parquet")
- df = pd.DataFrame({'processed_sim_data': self.meta_model.processed_sim_data})
- df.to_parquet(current_path, index=False)
+ directory_path = os.path.join(self.multi_model.config.output_path, "raw-output/metamodel/seed=0")
+ try:
+ os.makedirs(directory_path, exist_ok=True)
+ except OSError as e:
+ print(f"Error creating directory: {e}")
+ exit(1)
- def mean(self, chunks):
- """
- Calculates the mean of a list of numerical data.
-
- :param chunks (list): The data over which to calculate the mean.
- :return: float: The mean of the provided data.
- """
- return np.mean(chunks)
+ current_path = os.path.join(directory_path, f"{self.multi_model.config.metric}.parquet")
+ minimum = min(len(self.multi_model.timestamps), len(self.meta_model.processed_sim_data))
- def median(self, chunks):
- """
- Calculates the median of a list of numerical data.
-
- :param chunks (list): The data over which to calculate the median.
- :return: float: The median of the provided data.
- """
- return np.median(chunks)
-
- def meta_equation1(self, chunks):
- """
- Calculates a weighted mean where the weights are inversely proportional to the absolute difference from the median value.
- :param chunks (list): Data chunks from which to calculate the weighted mean.
- :return: float: The calculated weighted mean.
- """
-
- """Attempt 1"""
- # median_val = np.median(chunks)
- # proximity_weights = 1 / (1 + np.abs(chunks - median_val)) # Avoid division by zero
- # weighted_mean = np.sum(proximity_weights * chunks) / np.sum(proximity_weights)
- # return weighted_mean
-
- """Attempt 2 Inter-Quartile Mean (same accuracy as mean)"""
- # sorted_preds = np.sort(chunks, axis=0)
- # Q1 = int(np.floor(0.25 * len(sorted_preds)))
- # Q3 = int(np.floor(0.75 * len(sorted_preds)))
- #
- # iqm = np.mean(sorted_preds[Q1:Q3], axis=0)
- # return iqm
+ df = pd.DataFrame({
+ "timestamp": self.multi_model.timestamps[:minimum],
+ self.multi_model.config.metric: self.meta_model.processed_sim_data[:minimum]
+ })
+ df.to_parquet(current_path, index=False)
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/model.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/model.py
new file mode 100644
index 00000000..bfffd090
--- /dev/null
+++ b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/model.py
@@ -0,0 +1,32 @@
+"""
+A model is the output of simulator. It contains the data the simulator output, under a certain topology, seed,
+workload, datacenter configuration, etc. A model is further used in the analyzer as part of the MultiModel class,
+and further in the MetaModel class.
+
+:param sim: the simulation data of the model
+"""
+import json
+
+
+class Model:
+ """
+ Represents a single simulation output containing various data metrics collected under specific simulation conditions.
+ A Model object stores raw and processed simulation data and is designed to interact with higher-level structures like
+ MultiModel and MetaModel for complex data analysis.
+ """
+
+ def __init__(self, raw_sim_data, identifier: str):
+ self.raw_sim_data = raw_sim_data
+ self.id: str = str(identifier)
+ self.processed_sim_data = []
+ self.cumulative_time_series_values = []
+ self.cumulated: float = 0.0
+ self.experiment_name: str = ""
+ self.margins_of_error = []
+ self.topologies = []
+ self.workloads = []
+ self.allocation_policies = []
+ self.carbon_trace_paths = []
+
+ def is_meta_model(self) -> bool:
+ return self.id == "M"
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/multi_model.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/multi_model.py
new file mode 100644
index 00000000..4f993fee
--- /dev/null
+++ b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/multi_model.py
@@ -0,0 +1,410 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import pyarrow.parquet as pq
+from time import time, strftime
+from matplotlib.ticker import MaxNLocator, FuncFormatter
+from matplotlib.ticker import AutoMinorLocator
+from typing import IO
+from textwrap import dedent
+from models import Model
+from util import SimulationConfig, adjust_unit, PlotType, SIMULATION_DATA_FILE
+
+
+class MultiModel:
+ """
+ Handles multiple simulation models, aggregates their data based on user-defined parameters,
+ and generates plots and statistics.
+
+ Attributes:
+ window_size (int): The size of the window for data aggregation, which affects how data smoothing and granularity are handled.
+ models (list of Model): A list of Model instances that store the simulation data.
+ measure_unit (str): The unit of measurement for the simulation data, adjusted according to the user's specifications.
+ unit_scaling (int): The scaling factor applied to the unit of measurement.
+ max_model_len (int): The length of the shortest model's raw data, used for consistency in processing.
+ plot_path (str): The path where the generated plot will be saved.
+ analysis_file (IO): The file object for writing detailed analysis statistics.
+ COLOR_PALETTE (list of str): A list of color codes for plotting multiple models.
+
+ Methods:
+ parse_user_input(window_size): Parses and sets the class attributes based on the provided user input.
+ adjust_unit(): Adjusts the unit of measurement based on user settings, applying appropriate metric prefixes.
+ set_paths(): Initializes the directory paths for storing outputs and analysis results.
+ init_models(): Reads simulation data from Parquet files and initializes Model instances.
+ compute_windowed_aggregation(): Processes the raw data by applying a windowed aggregation function for smoothing.
+ generate_plot(): Orchestrates the generation of the specified plot type by calling the respective plotting functions.
+ generate_time_series_plot(): Generates a time series plot of the aggregated data.
+ generate_cumulative_plot(): Creates a bar chart showing cumulative data for each model.
+ generate_cumulative_time_series_plot(): Produces a plot that displays cumulative data over time for each model.
+ save_plot(): Saves the generated plot to a PDF file in the specified directory.
+ output_stats(): Writes detailed statistics of the simulation to an analysis file for record-keeping.
+ mean_of_chunks(np_array, window_size): Calculates the mean of data segments for smoothing and processing.
+ get_cumulative_limits(model_sums): Determines appropriate x-axis limits for cumulative plots based on the model data.
+
+ Usage:
+ To use this class, instantiate it with a dictionary of user settings, a path for outputs, and optionally a window size.
+ Call the `generate_plot` method to process the data and generate plots as configured by the user.
+ """
+
+ COLOR_PALETTE: list[str] = [
+ # Colorblind-friendly palette
+ "#0072B2", "#E69F00", "#009E73", "#D55E00", "#CC79A7", "#F0E442", "#8B4513",
+ "#56B4E9", "#F0A3FF", "#FFB400", "#00BFFF", "#90EE90", "#FF6347", "#8A2BE2", "#CD5C5C",
+ "#4682B4", "#FFDEAD", "#32CD32", "#D3D3D3", "#999999"
+ ]
+
+ def __init__(self, config: SimulationConfig, window_size: int = -1):
+ """
+ Initializes the MultiModel with provided user settings and prepares the environment.
+
+ :param user_input (dict): Configurations and settings from the user.
+ :param path (str): Path where output and analysis will be stored.
+ :param window_size (int): The size of the window to aggregate data; uses user input if -1.
+ :return: None
+ """
+
+ self.config: SimulationConfig = config
+ self.starting_time: float = time()
+ self.workload_time = None
+ self.timestamps = None
+ self.plot_path: str | None = None
+
+ self.window_size = config.window_size if window_size == -1 else window_size
+ self.measure_unit: str
+ self.unit_scaling: int
+ self.measure_unit, self.unit_scaling = adjust_unit(config.current_unit, config.unit_scaling_magnitude)
+
+ self.models: list[Model] = []
+ self.max_model_len = 0
+
+ try:
+ os.makedirs(self.config.output_path, exist_ok=True)
+ self.analysis_file: IO = open(config.output_path + "/analysis.txt", "w")
+ except Exception as e:
+ print(f"Error handling output directory: {e}")
+ exit(1)
+
+ self.analysis_file.write("Analysis file create\n")
+
+ self.init_models()
+ if self.config.is_metamodel:
+ self.COLOR_PALETTE = ["#b3b3b3" for _ in range(len(self.models))]
+ if len(self.config.plot_colors) > 0:
+ self.COLOR_PALETTE = self.config.plot_colors
+ self.compute_windowed_aggregation()
+
+ def get_model_path(self, dir: str) -> str:
+ return (
+ f"{self.config.simulation_path}/"
+ f"{dir}/"
+ f"seed={self.config.seed}/"
+ f"{SIMULATION_DATA_FILE}.parquet"
+ )
+
+ def init_models(self):
+ """
+ Initializes models from the simulation output stored in Parquet files. This method reads each Parquet file,
+ processes the relevant data, and initializes Model instances which are stored in the model list.
+
+ :return: None
+ :raise ValueError: If the unit scaling has not been set prior to model initialization.
+ """
+ if self.unit_scaling is None:
+ raise ValueError("Unit scaling factor is not set. Please ensure it is set correctly.")
+
+ simulation_directories = os.listdir(self.config.simulation_path)
+ simulation_directories.sort()
+
+ for sim_dir in simulation_directories:
+ print("Processing simulation: ", sim_dir)
+ if sim_dir == "metamodel":
+ continue
+
+ simulation_id: str = os.path.basename(sim_dir)
+ columns_to_read = ['timestamp', self.config.metric]
+ parquet_file = pq.read_table(self.get_model_path(sim_dir), columns=columns_to_read).to_pandas()
+
+ grouped_data = parquet_file.groupby('timestamp')[self.config.metric].sum()
+ # Apply unit scaling to the raw data
+ raw = np.divide(grouped_data.values, self.unit_scaling)
+ timestamps = parquet_file['timestamp'].unique()
+
+ model = Model(raw_sim_data=raw, identifier=simulation_id)
+ self.models.append(model)
+
+ if self.timestamps is None or len(self.timestamps) > len(timestamps):
+ self.timestamps = timestamps
+
+ self.max_model_len = min([len(model.raw_sim_data) for model in self.models])
+
+ def compute_windowed_aggregation(self) -> None:
+ """
+ Applies a windowed aggregation function to each model's dataset. This method is typically used for smoothing
+ or reducing data granularity. It involves segmenting the dataset into windows of specified size and applying
+ an aggregation function to each segment.
+
+ :return: None
+ :side effect: Modifies each model's processed_sim_data attribute to contain aggregated data.
+ """
+ if self.config.plot_type == PlotType.CUMULATIVE:
+ return
+
+ for model in self.models:
+ numeric_values = model.raw_sim_data
+ model.processed_sim_data = self.mean_of_chunks(numeric_values, self.config.window_size)
+
+ def generate_plot(self):
+ """
+ Creates and saves plots based on the processed data from multiple models. This method determines
+ the type of plot to generate based on user input and invokes the appropriate plotting function.
+
+ The plotting options supported are 'time_series', 'cumulative', and 'cumulative_time_series'.
+ Depending on the type specified, this method delegates to specific plot-generating functions.
+
+ :return: None
+ :raises ValueError: If the plot type specified is not recognized or supported by the system.
+ :side effect:
+ - Generates and saves a plot to the file system.
+ - Updates the plot attributes based on the generated plot.
+ - Displays the plot on the matplotlib figure canvas.
+ """
+ plt.figure(figsize=self.config.fig_size)
+
+ plt.xticks(size=32)
+ plt.yticks(size=32)
+ plt.ylabel(self.config.y_axis.label, size=26)
+ plt.xlabel(self.config.x_axis.label, size=26)
+ plt.title(self.config.plot_title, size=26)
+ plt.grid()
+
+ formatter = FuncFormatter(lambda x, _: '{:,}'.format(int(x)) if x >= 1000 else int(x))
+ ax = plt.gca()
+ ax.xaxis.set_major_formatter(formatter)
+
+ if self.config.x_axis.has_ticks():
+ ax = plt.gca()
+ ax.xaxis.set_major_locator(MaxNLocator(self.config.x_axis.ticks))
+
+ if self.config.y_axis.has_ticks():
+ ax = plt.gca()
+ ax.yaxis.set_major_locator(MaxNLocator(self.config.y_axis.ticks))
+
+ self.set_axis_limits()
+
+ match self.config.plot_type:
+ case PlotType.TIME_SERIES:
+ self.generate_time_series_plot()
+ case PlotType.CUMULATIVE:
+ self.generate_cumulative_plot()
+ case PlotType.CUMULATIVE_TIME_SERIES:
+ self.generate_cumulative_time_series_plot()
+
+ plt.tight_layout()
+ plt.subplots_adjust(right=0.85)
+ self.save_plot()
+ self.output_stats()
+
+ def generate_time_series_plot(self):
+ """
+ Plots time series data for each model. This function iterates over each model, applies the defined
+ windowing function to smooth the data, and plots the resulting series.
+
+ :return: None
+ :side effect: Plots are displayed on the matplotlib figure canvas.
+ """
+
+ for i, model in enumerate(self.models):
+ label = "Meta-Model" if model.is_meta_model() else "Model " + str(model.id)
+
+ if model.is_meta_model():
+ repeated_means = np.repeat(model.processed_sim_data, self.window_size)
+ plt.plot(repeated_means, drawstyle='steps-mid', label=label, color="#228B22", linestyle="solid",
+ linewidth=2)
+ else:
+ means = self.mean_of_chunks(model.raw_sim_data, self.window_size)
+ repeated_means = np.repeat(means, self.window_size)[:len(model.raw_sim_data)]
+ plt.plot(repeated_means, drawstyle='steps-mid', label=label, color=self.COLOR_PALETTE[i])
+
+ def generate_cumulative_plot(self):
+ """
+ Generates a horizontal bar chart showing cumulative data for each model. This function
+ aggregates total values per model and displays them in a bar chart, providing a visual
+ comparison of total values across models.
+
+ :return: None
+ :side effect: Plots are displayed on the matplotlib figure canvas.
+ """
+ plt.xlim(self.get_cumulative_limits(model_sums=self.sum_models_entries()))
+ plt.ylabel("Model ID", size=30)
+ plt.xlabel(self.config.x_axis.label, size=30)
+
+ ax = plt.gca()
+ ax.tick_params(axis='x', which='major', length=12) # Set length of the ticks
+ ax.set_xticklabels([]) # Hide x-axis numbers
+ ax.xaxis.set_minor_locator(AutoMinorLocator(5)) # Set two minor ticks between majors
+ ax.tick_params(axis='x', which='minor', length=7, color='black')
+ plt.yticks(range(len(self.models)), [model.id for model in self.models])
+
+ plt.grid(False)
+
+ cumulated_energies = self.sum_models_entries()
+
+ for i, model in (enumerate(self.models)):
+ label = "Meta-Model" if model.is_meta_model() else "Model " + str(model.id)
+ if model.is_meta_model():
+ plt.barh(i, cumulated_energies[i], label=label, color='#009E73', hatch='//')
+ plt.text(cumulated_energies[i], i, str(int(round(cumulated_energies[i], 0))), ha='left', va='center',
+ size=26)
+ else:
+ round_decimals = 0 if cumulated_energies[i] > 500 else 1
+ plt.barh(label=label, y=i, width=cumulated_energies[i], color=self.COLOR_PALETTE[i])
+ plt.text(cumulated_energies[i], i, str(int(round(cumulated_energies[i], round_decimals))), ha='left',
+ va='center', size=26)
+
+ def generate_cumulative_time_series_plot(self):
+ """
+ Generates a plot showing the cumulative data over time for each model. This visual representation is
+ useful for analyzing trends and the accumulation of values over time.
+
+ :return: None
+ :side effect: Displays the cumulative data over time on the matplotlib figure canvas.
+ """
+ self.compute_cumulative_time_series()
+
+ for i, model in enumerate(self.models):
+ label = "Meta-Model" if model.is_meta_model() else "Model " + str(model.id)
+ if model.is_meta_model():
+ cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
+ :len(model.processed_sim_data) * self.window_size]
+ plt.plot(cumulative_repeated, label=label, drawstyle='steps-mid', color="#228B22", linestyle="solid",
+ linewidth=2)
+ else:
+ cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
+ :len(model.raw_sim_data)]
+ plt.plot(cumulative_repeated, drawstyle='steps-mid', label=("Model " + str(model.id)),
+ color=self.COLOR_PALETTE[i])
+
+ def compute_cumulative_time_series(self):
+ """
+ Computes the cumulative sum of processed data over time for each model, storing the result for use in plotting.
+
+ :return: None
+ :side effect: Updates each model's 'cumulative_time_series_values' attribute with the cumulative sums.
+ """
+ for model in self.models:
+ cumulative_array = []
+ _sum = 0
+ for value in model.processed_sim_data:
+ _sum += value
+ cumulative_array.append(_sum * self.window_size)
+ model.cumulative_time_series_values = cumulative_array
+
+ def save_plot(self):
+ """
+ Saves the current plot to a PDF file in the specified directory, constructing the file path from the
+ plot attributes and ensuring that the directory exists before saving.
+
+ :return: None
+ :side effect: Creates or overwrites a PDF file containing the plot in the designated folder.
+ """
+ output_dir = f"{self.config.output_path}/simulation-analysis/{self.config.metric}"
+ try:
+ os.makedirs(output_dir, exist_ok=True)
+ except OSError as e:
+ print(f"Error handling output directory: {e}")
+ exit(1)
+
+ self.plot_path: str = (
+ f"{output_dir}/"
+ f"{self.config.plot_type}"
+ f"_plot_multimodel_metric={self.config.metric}"
+ f"_window={self.window_size}"
+ f".pdf"
+ ) if self.config.figure_export_name is None \
+ else f"{output_dir}/{self.config.figure_export_name}.pdf"
+
+ plt.savefig(self.plot_path)
+
+ def set_axis_limits(self) -> None:
+ """
+ Sets the x-axis and y-axis limits for the current plot based on the user-defined configuration.
+ This method ensures that the plot displays the data within the specified range, enhancing readability.
+ """
+ if self.config.x_axis.has_range():
+ plt.xlim(left=self.config.x_axis.value_range[0], right=self.config.x_axis.value_range[1])
+
+ if self.config.y_axis.has_range():
+ plt.ylim(bottom=self.config.y_axis.value_range[0], top=self.config.y_axis.value_range[1])
+
+ def sum_models_entries(self):
+ """
+ Computes the total values from each model for use in cumulative plotting. This method aggregates
+ the data across all models and prepares it for cumulative display.
+
+ :return: List of summed values for each model, useful for plotting and analysis.
+ """
+ models_sums = []
+ for i, model in enumerate(self.models):
+ if model.is_meta_model():
+ models_sums.append(model.cumulated)
+ else:
+ cumulated_energy = model.raw_sim_data.sum()
+ cumulated_energy = round(cumulated_energy, 2)
+ models_sums.append(cumulated_energy)
+
+ return models_sums
+
+ def output_stats(self) -> None:
+ """
+ Records and writes detailed simulation statistics to an analysis file. This includes time stamps,
+ performance metrics, and other relevant details.
+
+ :return: None
+ :side effect: Appends detailed simulation statistics to an existing file for record-keeping and analysis.
+ """
+ end_time: float = time()
+ self.analysis_file.write(dedent(
+ f"""
+ =========================================================
+ Simulation made at {strftime("%Y-%m-%d %H:%M:%S")}
+ Metric: {self.config.metric}
+ Unit: {self.measure_unit}
+ Window size: {self.window_size}
+ Sample count in raw sim data: {self.max_model_len}
+ Computing time {round(end_time - self.starting_time, 1)}s
+ Plot path: {self.plot_path}
+ =========================================================
+ """
+ ))
+
+ def mean_of_chunks(self, np_array: np.array, window_size: int) -> np.array:
+ """
+ Calculates the mean of data within each chunk for a given array. This method helps in smoothing the data by
+ averaging over specified 'window_size' segments.
+
+ :param np_array: Array of numerical data to be chunked and averaged.
+ :param window_size: The size of each segment to average over.
+ :return: np.array: An array of mean values for each chunk.
+ """
+ if window_size == 1:
+ return np_array
+
+ chunks: list[np.array] = [np_array[i:i + window_size] for i in range(0, len(np_array), window_size)]
+ means: list[float] = [np.mean(chunk) for chunk in chunks]
+ return np.array(means)
+
+ def get_cumulative_limits(self, model_sums: list[float]) -> list[float]:
+ """
+ Calculates the appropriate x-axis limits for cumulative plots based on the summarized data from each model.
+
+ :param model_sums: List of summed values for each model.
+ :return: list[float]: A list containing the minimum and maximum values for the x-axis limits.
+ """
+ axis_min = min(model_sums) * 0.9
+ axis_max = max(model_sums) * 1.1
+
+ if self.config.x_axis.value_range is not None:
+ axis_min = self.config.x_axis.value_range[0]
+ axis_max = self.config.x_axis.value_range[1]
+
+ return [axis_min * 0.9, axis_max * 1.1]