summaryrefslogtreecommitdiff
path: root/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
diff options
context:
space:
mode:
authorRadu Nicolae <rnicolae04@gmail.com>2024-10-25 08:21:49 +0200
committerGitHub <noreply@github.com>2024-10-25 08:21:49 +0200
commit27f5b7dcb05aefdab9b762175d538931face0aba (patch)
treeaed9b6cd324f73d4db9af5fc70000a62b4422fc1 /opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
parent4a010c6b9e033314a2624a0756dcdc7f17010d9d (diff)
M3SA - Multi-Meta-Model Simulation Analyzer (#251)
* (feat) demo files are now ignored * integrating m3sa changes with opendc * gitignore ignores demo * m3sa linked, tested, works 🎉🎆 * linting & checks fully pass * m3sa documentation (re...)added * package.json added, a potentail solution for Build Docker Images workflow * (fix) opendc-m3sa renamed to opendc-experiments-m3sa * (feat) Model is now a dataclass * (fix) package and package-lock reverted as before the PR, now they mirror the opendc master branch * (fix) Experiments renamed to experiment * branch updated with changes from master branch * trying to fix the build docker image failed workflow * trying to fix the build docker image failed workflow * All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability. (#255) (#37) Co-authored-by: Dante Niewenhuis <d.niewenhuis@hotmail.com> * All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability. (#255) (#38) Co-authored-by: Dante Niewenhuis <d.niewenhuis@hotmail.com> * All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability. (#255) (#39) Co-authored-by: Dante Niewenhuis <d.niewenhuis@hotmail.com> * [TEMP](feat) m3saCli decoupled from experimentCli * spotless and minor refactoring * (feat)[TEMP] decoupling m3sa from experiment * spotless applied * documentation resolved * requirements.txt added * path to M3SA is now provided as a parameter to M3SACLI * spotless applied * (fix) python environment variables solved, output analysis folder solved * documentation changed and matching the master branch doc * package-lock reverted * package-lock reverted --------- Co-authored-by: Dante Niewenhuis <d.niewenhuis@hotmail.com>
Diffstat (limited to 'opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py')
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py501
1 files changed, 501 insertions, 0 deletions
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
new file mode 100644
index 00000000..17a92765
--- /dev/null
+++ b/opendc-experiments/opendc-experiments-m3sa/src/main/python/models/MultiModel.py
@@ -0,0 +1,501 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import pyarrow.parquet as pq
+import time
+from matplotlib.ticker import MaxNLocator, FuncFormatter
+
+from simulator_specifics import *
+from .MetaModel import MetaModel
+from .Model import Model
+
+
+def is_meta_model(model):
+ """
+ Check if the given model is a MetaModel based on its ID. A metamodel will always have an id of -101.
+
+ Args:
+ model (Model): The model to check.
+
+ Returns:
+ bool: True if model is MetaModel, False otherwise.
+ """
+ return model.id == MetaModel.META_MODEL_ID
+
+
+class MultiModel:
+ """
+ Handles multiple simulation models, aggregates their data based on user-defined parameters,
+ and generates plots and statistics.
+
+ Attributes:
+ user_input (dict): Configuration dictionary containing user settings for model processing.
+ path (str): The base directory path where output files and analysis results are stored.
+ window_size (int): The size of the window for data aggregation, which affects how data smoothing and granularity are handled.
+ models (list of Model): A list of Model instances that store the simulation data.
+ metric (str): The specific metric to be analyzed and plotted, as defined by the user.
+ measure_unit (str): The unit of measurement for the simulation data, adjusted according to the user's specifications.
+ output_folder_path (str): Path to the folder where output files are saved.
+ raw_output_path (str): Directory path where raw simulation data is stored.
+ analysis_file_path (str): Path to the file where detailed analysis results are recorded.
+ plot_type (str): The type of plot to generate, which can be 'time_series', 'cumulative', or 'cumulative_time_series'.
+ plot_title (str): The title of the plot.
+ x_label (str), y_label (str): Labels for the x and y axes of the plot.
+ x_min (float), x_max (float), y_min (float), y_max (float): Optional parameters to define axis limits for the plots.
+
+ Methods:
+ parse_user_input(window_size): Parses and sets the class attributes based on the provided user input.
+ adjust_unit(): Adjusts the unit of measurement based on user settings, applying appropriate metric prefixes.
+ set_paths(): Initializes the directory paths for storing outputs and analysis results.
+ init_models(): Reads simulation data from Parquet files and initializes Model instances.
+ compute_windowed_aggregation(): Processes the raw data by applying a windowed aggregation function for smoothing.
+ generate_plot(): Orchestrates the generation of the specified plot type by calling the respective plotting functions.
+ generate_time_series_plot(): Generates a time series plot of the aggregated data.
+ generate_cumulative_plot(): Creates a bar chart showing cumulative data for each model.
+ generate_cumulative_time_series_plot(): Produces a plot that displays cumulative data over time for each model.
+ save_plot(): Saves the generated plot to a PDF file in the specified directory.
+ output_stats(): Writes detailed statistics of the simulation to an analysis file for record-keeping.
+ mean_of_chunks(np_array, window_size): Calculates the mean of data segments for smoothing and processing.
+ get_cumulative_limits(model_sums): Determines appropriate x-axis limits for cumulative plots based on the model data.
+
+ Usage:
+ To use this class, instantiate it with a dictionary of user settings, a path for outputs, and optionally a window size.
+ Call the `generate_plot` method to process the data and generate plots as configured by the user.
+ """
+
+ def __init__(self, user_input, path, window_size=-1):
+ """
+ Initializes the MultiModel with provided user settings and prepares the environment.
+
+ :param user_input (dict): Configurations and settings from the user.
+ :param path (str): Path where output and analysis will be stored.
+ :param window_size (int): The size of the window to aggregate data; uses user input if -1.
+ :return: None
+ """
+
+ self.starting_time = time.time()
+ self.end_time = None
+ self.workload_time = None
+
+ self.user_input = user_input
+
+ self.metric = None
+ self.measure_unit = None
+ self.path = path
+ self.models = []
+
+ self.folder_path = None
+ self.output_folder_path = None
+ self.raw_output_path = None
+ self.analysis_file_path = None
+ self.unit_scaling = 1
+ self.window_size = -1
+ self.window_function = "median"
+ self.max_model_len = 0
+ self.seed = 0
+
+ self.plot_type = None
+ self.plot_title = None
+ self.x_label = None
+ self.y_label = None
+ self.x_min = None
+ self.x_max = None
+ self.y_min = None
+ self.y_max = None
+ self.plot_path = None
+
+ self.parse_user_input(window_size)
+ self.set_paths()
+ self.init_models()
+
+ self.compute_windowed_aggregation()
+
+ def parse_user_input(self, window_size):
+ """
+ Parses and sets attributes based on user input.
+
+ :param window_size (int): Specified window size for data aggregation, defaults to user_input if -1.
+ :return: None
+ """
+ if window_size == -1:
+ self.window_size = self.user_input["window_size"]
+ else:
+ self.window_size = window_size
+ self.metric = self.user_input["metric"]
+ self.measure_unit = self.adjust_unit()
+ self.window_function = self.user_input["window_function"]
+ self.seed = self.user_input["seed"]
+
+ self.plot_type = self.user_input["plot_type"]
+ self.plot_title = self.user_input["plot_title"]
+ if self.user_input["x_label"] == "":
+ self.x_label = "Samples"
+ else:
+ self.x_label = self.user_input["x_label"]
+
+ if self.user_input["y_label"] == "":
+ self.y_label = self.metric + " [" + self.measure_unit + "]"
+ else:
+ self.y_label = self.user_input["y_label"]
+
+ self.y_min = self.user_input["y_min"]
+ self.y_max = self.user_input["y_max"]
+ self.x_min = self.user_input["x_min"]
+ self.x_max = self.user_input["x_max"]
+
+ def adjust_unit(self):
+ """
+ Adjusts the unit of measurement according to the scaling magnitude specified by the user.
+ This method translates the given measurement scale into a scientifically accepted metric prefix.
+
+ :return str: The metric prefixed by the appropriate scale (e.g., 'kWh' for kilo-watt-hour if the scale is 3).
+ :raise ValueError: If the unit scaling magnitude provided by the user is not within the accepted range of scaling factors.
+ """
+ prefixes = ['n', 'μ', 'm', '', 'k', 'M', 'G', 'T']
+ scaling_factors = [-9, -6, -3, 1, 3, 6, 9]
+ given_metric = self.user_input["current_unit"]
+ self.unit_scaling = self.user_input["unit_scaling_magnitude"]
+
+ if self.unit_scaling not in scaling_factors:
+ raise ValueError(
+ "Unit scaling factor not found. Please enter a valid unit from [-9, -6, -3, 1, 3, 6, 9].")
+
+ if self.unit_scaling == 1:
+ return given_metric
+
+ for i in range(len(scaling_factors)):
+ if self.unit_scaling == scaling_factors[i]:
+ self.unit_scaling = 10 ** self.unit_scaling
+ result = prefixes[i] + given_metric
+ return result
+
+ def set_paths(self):
+ """
+ Configures and initializes the directory paths for output and analysis based on the base directory provided.
+ This method sets paths for the raw output and detailed analysis results, ensuring directories are created if
+ they do not already exist, and prepares a base file for capturing analytical summaries.
+
+ :return: None
+ :side effect: Creates necessary directories and files for output and analysis.
+ """
+ self.output_folder_path = os.getcwd() + "/" + self.path
+ self.raw_output_path = os.getcwd() + "/" + self.path + "/raw-output"
+ self.analysis_file_path = os.getcwd() + "/" + self.path + "/simulation-analysis/"
+ os.makedirs(self.analysis_file_path, exist_ok=True)
+ self.analysis_file_path = os.path.join(self.analysis_file_path, "analysis.txt")
+ if not os.path.exists(self.analysis_file_path):
+ with open(self.analysis_file_path, "w") as f:
+ f.write("Analysis file created.\n")
+
+ def init_models(self):
+ """
+ Initializes models from the simulation output stored in Parquet files. This method reads each Parquet file,
+ processes the relevant data, and initializes Model instances which are stored in the model list.
+
+ :return: None
+ :raise ValueError: If the unit scaling has not been set prior to model initialization.
+ """
+ model_id = 0
+
+ for simulation_folder in os.listdir(self.raw_output_path):
+ if simulation_folder == "metamodel":
+ continue
+ path_of_parquet_file = f"{self.raw_output_path}/{simulation_folder}/seed={self.seed}/{SIMULATION_DATA_FILE}.parquet"
+ parquet_file = pq.read_table(path_of_parquet_file).to_pandas()
+ raw = parquet_file.select_dtypes(include=[np.number]).groupby("timestamp")
+ raw = raw[self.metric].sum().values
+
+ if self.unit_scaling is None:
+ raise ValueError("Unit scaling factor is not set. Please ensure it is set correctly.")
+
+ raw = np.divide(raw, self.unit_scaling)
+
+ if self.user_input["samples_per_minute"] > 0:
+ MINUTES_IN_DAY = 1440
+ self.workload_time = len(raw) * self.user_input["samples_per_minute"] / MINUTES_IN_DAY
+
+ model = Model(raw_sim_data=raw, id=model_id, path=self.output_folder_path)
+ self.models.append(model)
+ model_id += 1
+
+ self.max_model_len = min([len(model.raw_sim_data) for model in self.models])
+
+ def compute_windowed_aggregation(self):
+ """
+ Applies a windowed aggregation function to each model's dataset. This method is typically used for smoothing
+ or reducing data granularity. It involves segmenting the dataset into windows of specified size and applying
+ an aggregation function to each segment.
+
+ :return: None
+ :side effect: Modifies each model's processed_sim_data attribute to contain aggregated data.
+ """
+ if self.plot_type != "cumulative":
+ for model in self.models:
+ numeric_values = model.raw_sim_data
+ model.processed_sim_data = self.mean_of_chunks(numeric_values, self.window_size)
+
+ def generate_plot(self):
+ """
+ Creates and saves plots based on the processed data from multiple models. This method determines
+ the type of plot to generate based on user input and invokes the appropriate plotting function.
+
+ The plotting options supported are 'time_series', 'cumulative', and 'cumulative_time_series'.
+ Depending on the type specified, this method delegates to specific plot-generating functions.
+
+ :return: None
+ :raises ValueError: If the plot type specified is not recognized or supported by the system.
+ :side effect:
+ - Generates and saves a plot to the file system.
+ - Updates the plot attributes based on the generated plot.
+ - Displays the plot on the matplotlib figure canvas.
+ """
+ plt.figure(figsize=(12, 10))
+ plt.xticks(size=22)
+ plt.yticks(size=22)
+ plt.ylabel(self.y_label, size=26)
+ plt.xlabel(self.x_label, size=26)
+ plt.title(self.plot_title, size=26)
+ plt.grid()
+
+ formatter = FuncFormatter(lambda x, _: '{:,}'.format(int(x)) if x >= 1000 else int(x))
+ ax = plt.gca()
+ ax.xaxis.set_major_formatter(formatter)
+ # ax.yaxis.set_major_formatter(formatter) yaxis has formatting issues - to solve in a future iteration
+
+ if self.user_input['x_ticks_count'] is not None:
+ ax = plt.gca()
+ ax.xaxis.set_major_locator(MaxNLocator(self.user_input['x_ticks_count']))
+
+ if self.user_input['y_ticks_count'] is not None:
+ ax = plt.gca()
+ ax.yaxis.set_major_locator(MaxNLocator(self.user_input['y_ticks_count']))
+
+ self.set_x_axis_lim()
+ self.set_y_axis_lim()
+
+ if self.plot_type == "time_series":
+ self.generate_time_series_plot()
+ elif self.plot_type == "cumulative":
+ self.generate_cumulative_plot()
+ elif self.plot_type == "cumulative_time_series":
+ self.generate_cumulative_time_series_plot()
+ else:
+ raise ValueError(
+ "Plot type not recognized. Please enter a valid plot type. The plot can be either "
+ "'time_series', 'cumulative', or 'cumulative_time_series'."
+ )
+
+ plt.tight_layout()
+ plt.subplots_adjust(right=0.85)
+ plt.legend(fontsize=12, bbox_to_anchor=(1, 1))
+ self.save_plot()
+ self.output_stats()
+
+ def generate_time_series_plot(self):
+ """
+ Plots time series data for each model. This function iterates over each model, applies the defined
+ windowing function to smooth the data, and plots the resulting series.
+
+ :return: None
+ :side effect: Plots are displayed on the matplotlib figure canvas.
+ """
+ for model in self.models:
+ label = "Meta-Model" if is_meta_model(model) else "Model " + str(model.id)
+ if is_meta_model(model):
+ repeated_means = np.repeat(means, self.window_size)[:len(model.processed_sim_data) * self.window_size]
+ plt.plot(
+ repeated_means,
+ drawstyle='steps-mid',
+ label=label,
+ color="red",
+ linestyle="--",
+ marker="o",
+ markevery=max(1, len(repeated_means) // 50),
+ linewidth=2
+ )
+ else:
+ means = self.mean_of_chunks(model.raw_sim_data, self.window_size)
+ repeated_means = np.repeat(means, self.window_size)[:len(model.raw_sim_data)]
+ plt.plot(repeated_means, drawstyle='steps-mid', label=label)
+
+ def generate_cumulative_plot(self):
+ """
+ Generates a horizontal bar chart showing cumulative data for each model. This function
+ aggregates total values per model and displays them in a bar chart, providing a visual
+ comparison of total values across models.
+
+ :return: None
+ :side effect: Plots are displayed on the matplotlib figure canvas.
+ """
+ plt.xlim(self.get_cumulative_limits(model_sums=self.sum_models_entries()))
+ plt.ylabel("Model ID", size=20)
+ plt.xlabel("Total " + self.metric + " [" + self.measure_unit + "]")
+ plt.yticks(range(len(self.models)), [model.id for model in self.models])
+ plt.grid(False)
+
+ cumulated_energies = self.sum_models_entries()
+ for i, model in enumerate(self.models):
+ label = "Meta-Model" if is_meta_model(model) else "Model " + str(model.id)
+ if is_meta_model(model):
+ plt.barh(label=label, y=i, width=cumulated_energies[i], color="red")
+ else:
+ plt.barh(label=label, y=i, width=cumulated_energies[i])
+ plt.text(cumulated_energies[i], i, str(cumulated_energies[i]), ha='left', va='center', size=26)
+
+ def generate_cumulative_time_series_plot(self):
+ """
+ Generates a plot showing the cumulative data over time for each model. This visual representation is
+ useful for analyzing trends and the accumulation of values over time.
+
+ :return: None
+ :side effect: Displays the cumulative data over time on the matplotlib figure canvas.
+ """
+ self.compute_cumulative_time_series()
+
+ for model in self.models:
+ if is_meta_model(model):
+ cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
+ :len(model.processed_sim_data) * self.window_size]
+ plt.plot(
+ cumulative_repeated,
+ drawstyle='steps-mid',
+ label=("Meta-Model"),
+ color="red",
+ linestyle="--",
+ marker="o",
+ markevery=max(1, len(cumulative_repeated) // 10),
+ linewidth=3
+ )
+ else:
+ cumulative_repeated = np.repeat(model.cumulative_time_series_values, self.window_size)[
+ :len(model.raw_sim_data)]
+ plt.plot(cumulative_repeated, drawstyle='steps-mid', label=("Model " + str(model.id)))
+
+ def compute_cumulative_time_series(self):
+ """
+ Computes the cumulative sum of processed data over time for each model, storing the result for use in plotting.
+
+ :return: None
+ :side effect: Updates each model's 'cumulative_time_series_values' attribute with the cumulative sums.
+ """
+ for model in self.models:
+ cumulative_array = []
+ _sum = 0
+ for value in model.processed_sim_data:
+ _sum += value
+ cumulative_array.append(_sum * self.window_size)
+ model.cumulative_time_series_values = cumulative_array
+
+ def save_plot(self):
+ """
+ Saves the current plot to a PDF file in the specified directory, constructing the file path from the
+ plot attributes and ensuring that the directory exists before saving.
+
+ :return: None
+ :side effect: Creates or overwrites a PDF file containing the plot in the designated folder.
+ """
+ folder_prefix = self.output_folder_path + "/simulation-analysis/" + self.metric + "/"
+ self.plot_path = folder_prefix + self.plot_type + "_plot_multimodel_metric=" + self.metric + "_window=" + str(
+ self.window_size) + ".pdf"
+ plt.savefig(self.plot_path)
+
+ def set_x_axis_lim(self):
+ """
+ Sets the x-axis limits for the plot based on user-defined minimum and maximum values. If values
+ are not specified, the axis limits will default to encompassing all data points.
+
+ :return: None
+ :side effect: Adjusts the x-axis limits of the current matplotlib plot.
+ """
+ if self.x_min is not None:
+ plt.xlim(left=self.x_min)
+
+ if self.x_max is not None:
+ plt.xlim(right=self.x_max)
+
+ def set_y_axis_lim(self):
+ """
+ Dynamically sets the y-axis limits to be slightly larger than the range of the data, enhancing
+ the readability of the plot by ensuring all data points are comfortably within the view.
+
+ :return: None
+ :side effect: Adjusts the y-axis limits of the current matplotlib plot.
+ """
+ if self.y_min is not None:
+ plt.ylim(bottom=self.y_min)
+ if self.y_max is not None:
+ plt.ylim(top=self.y_max)
+
+ def sum_models_entries(self):
+ """
+ Computes the total values from each model for use in cumulative plotting. This method aggregates
+ the data across all models and prepares it for cumulative display.
+
+ :return: List of summed values for each model, useful for plotting and analysis.
+ """
+ models_sums = []
+ for (i, model) in enumerate(self.models):
+ if is_meta_model(model):
+ models_sums.append(model.cumulated)
+ else:
+ cumulated_energy = model.raw_sim_data.sum()
+ cumulated_energy = round(cumulated_energy, 2)
+ models_sums.append(cumulated_energy)
+
+ return models_sums
+
+ def output_stats(self):
+ """
+ Records and writes detailed simulation statistics to an analysis file. This includes time stamps,
+ performance metrics, and other relevant details.
+
+ :return: None
+ :side effect: Appends detailed simulation statistics to an existing file for record-keeping and analysis.
+ """
+ self.end_time = time.time()
+ with open(self.analysis_file_path, "a") as f:
+ f.write("\n\n========================================\n")
+ f.write("Simulation made at " + time.strftime("%Y-%m-%d %H:%M:%S") + "\n")
+ f.write("Metric: " + self.metric + "\n")
+ f.write("Unit: " + self.measure_unit + "\n")
+ f.write("Window size: " + str(self.window_size) + "\n")
+ f.write("Sample count in raw sim data: " + str(self.max_model_len) + "\n")
+ f.write("Computing time " + str(round(self.end_time - self.starting_time, 1)) + "s\n")
+ if (self.user_input["samples_per_minute"] > 0):
+ f.write("Workload time: " + str(round(self.workload_time, 2)) + " days\n")
+ f.write("Plot path" + self.plot_path + "\n")
+ f.write("========================================\n")
+
+ def mean_of_chunks(self, np_array, window_size):
+ """
+ Calculates the mean of data within each chunk for a given array. This method helps in smoothing the data by
+ averaging over specified 'window_size' segments.
+
+ :param np_array (np.array): Array of numerical data to be chunked and averaged.
+ :param window_size (int): The size of each segment to average over.
+ :return: np.array: An array of mean values for each chunk.
+ :side effect: None
+ """
+ if window_size == 1:
+ return np_array
+
+ chunks = [np_array[i:i + window_size] for i in range(0, len(np_array), window_size)]
+ means = [np.mean(chunk) for chunk in chunks]
+ return np.array(means)
+
+ def get_cumulative_limits(self, model_sums):
+ """
+ Calculates the appropriate x-axis limits for cumulative plots based on the summarized data from each model.
+
+ :param model_sums (list of float): The total values for each model.
+ :return: tuple: A tuple containing the minimum and maximum x-axis limits.
+ """
+ axis_min = min(model_sums) * 0.9
+ axis_max = max(model_sums) * 1.1
+
+ if self.user_input["x_min"] is not None:
+ axis_min = self.user_input["x_min"]
+ if self.user_input["x_max"] is not None:
+ axis_max = self.user_input["x_max"]
+
+ return [axis_min * 0.9, axis_max * 1.1]