summaryrefslogtreecommitdiff
path: root/opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py
diff options
context:
space:
mode:
authorRadu Nicolae <rnicolae04@gmail.com>2025-06-16 18:01:07 +0200
committerGitHub <noreply@github.com>2025-06-16 18:01:07 +0200
commit0df3d9ced743ac3385dd710c7133a6cf369b051c (patch)
treeeff5d6d67c275643e229731ba08c5fe7dc4ccd0a /opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py
parentc7e303ad1b5217e2ff24cee9538ac841d6149706 (diff)
integrated M3SA, updated with tests and CpuPowerModels
Diffstat (limited to 'opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py')
-rw-r--r--opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py114
1 files changed, 0 insertions, 114 deletions
diff --git a/opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py b/opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py
deleted file mode 100644
index 463f69e6..00000000
--- a/opendc-experiments/opendc-experiments-m3sa/src/main/python/accuracy_evaluator.py
+++ /dev/null
@@ -1,114 +0,0 @@
-import numpy as np
-
-from models.MetaModel import MetaModel
-
-
-def accuracy_evaluator(
- real_data,
- multi_model,
- compute_mape=True,
- compute_nad=True,
- compute_rmsle=True,
- rmsle_hyperparameter=0.5,
- only_metamodel=False
-):
- """
- :param real_data: the real-world data of the simulation
- :param multi_model: the Multi-Model, containing individual models (possibly also a Meta-Model, with id=101)
- :param MAPE: whether to calculate Mean Absolute Percentage Error (MAPE)
- :param NAD: whether to calculate Normalized Absolute Differences (NAD)
- :param RMSLE: whether to calculate Root Mean Square Logarithmic Error (RMSLE)
- :param rmsle_hyperparameter: the hyperparameter that balances the ration underestimations:overestimations
- - default is 0.5 (balanced penalty)
- - < 0.5: more penalty for overestimations
- - > 0.5: more penalty for underestimations
- e.g., RMSLE_hyperparameter=0.3 -> 30% penalty for overestimations, 70% penalty for underestimations (3:7 ratio)
- :return: None, but prints the accuracy metrics
- """
-
- meta_model = MetaModel(multimodel=multi_model)
- multi_model.models.append(meta_model.meta_model) # metamodel
- # multi_model.models.append(Model(raw_host_data=real_data, id=-1, path=None)) # real-world data
-
- with open(multi_model.output_folder_path + "/accuracy_report.txt", "a") as f:
- f.write("====================================\n")
- f.write("Accuracy Report, against ground truth\n")
-
- for model in multi_model.models:
- if only_metamodel and model.id != 101:
- continue
-
- if model.id == -1:
- f.write("Real-World data")
- elif model.id == 101:
- f.write(
- f"Meta-Model, meta-function: {multi_model.user_input['meta_function']}, window_size: {meta_model.multi_model.window_size}")
- else:
- f.write(f"Model {model.id}")
-
- simulation_data = model.raw_sim_data
- min_len = min(len(real_data), len(simulation_data))
- real_data = real_data[:min_len]
- simulation_data = simulation_data[:min_len]
- if compute_mape:
- accuracy_mape = mape(
- real_data=real_data,
- simulation_data=simulation_data
- )
- f.write(f"\nMean Absolute Percentage Error (MAPE): {accuracy_mape}%")
-
- if compute_nad:
- accuracy_nad = nad(
- real_data=real_data,
- simulation_data=simulation_data
- )
- f.write(f"\nNormalized Absolute Differences (NAD): {accuracy_nad}%")
-
- if compute_rmsle:
- accuracy_rmsle = rmsle(
- real_data=real_data,
- simulation_data=simulation_data,
- alpha=rmsle_hyperparameter
- )
- f.write(
- f"\nRoot Mean Square Logarithmic Error (RMSLE), alpha={rmsle_hyperparameter}:{accuracy_rmsle}\n\n")
-
- f.write("====================================\n")
-
-
-def mape(real_data, simulation_data):
- """
- Calculate Mean Absolute Percentage Error (MAPE)
- :param real_data: Array of real values
- :param simulation_data: Array of simulated values
- :return: MAPE value
- """
- real_data = np.array(real_data)
- simulation_data = np.array(simulation_data)
- return round(np.mean(np.abs((real_data - simulation_data) / real_data)) * 100, 3)
-
-
-def nad(real_data, simulation_data):
- """
- Calculate Normalized Absolute Differences (NAD)
- :param real_data: Array of real values
- :param simulation_data: Array of simulated values
- :return: NAD value
- """
- real_data = np.array(real_data)
- simulation_data = np.array(simulation_data)
- return round(np.sum(np.abs(real_data - simulation_data)) / np.sum(real_data) * 100, 3)
-
-
-def rmsle(real_data, simulation_data, alpha=0.5):
- """
- Calculate Root Mean Square Logarithmic Error (RMSLE) with an adjustable alpha parameter
- :param real_data: Array of real values
- :param simulation_data: Array of simulated values
- :param alpha: Hyperparameter that balances the penalty between underestimations and overestimations
- :return: RMSLE value
- """
- real_data = np.array(real_data)
- simulation_data = np.array(simulation_data)
- log_diff = alpha * np.log(real_data) - (1 - alpha) * np.log(simulation_data)
- return round(np.sqrt(np.mean(log_diff ** 2)) * 100, 3)