///
import {Colors} from "./colors";
export enum IntensityLevel {
LOW,
MID_LOW,
MID_HIGH,
HIGH
}
export class Util {
private static authorizationLevels = [
"OWN", "EDIT", "VIEW"
];
/**
* Derives the wall locations given a list of rooms.
*
* Does so by computing an outline around all tiles in the rooms.
*/
public static deriveWallLocations(rooms: IRoom[]): IRoomWall[] {
const verticalWalls = {};
const horizontalWalls = {};
let doInsert;
rooms.forEach((room: IRoom) => {
room.tiles.forEach((tile: ITile) => {
const x = tile.position.x, y = tile.position.y;
for (let dX = -1; dX <= 1; dX++) {
for (let dY = -1; dY <= 1; dY++) {
if (Math.abs(dX) === Math.abs(dY)) {
continue;
}
doInsert = true;
room.tiles.forEach((otherTile: ITile) => {
if (otherTile.position.x === x + dX && otherTile.position.y === y + dY) {
doInsert = false;
}
});
if (doInsert) {
if (dX === -1) {
if (verticalWalls[x] === undefined) {
verticalWalls[x] = [];
}
if (verticalWalls[x].indexOf(y) === -1) {
verticalWalls[x].push(y);
}
} else if (dX === 1) {
if (verticalWalls[x + 1] === undefined) {
verticalWalls[x + 1] = [];
}
if (verticalWalls[x + 1].indexOf(y) === -1) {
verticalWalls[x + 1].push(y);
}
} else if (dY === -1) {
if (horizontalWalls[y] === undefined) {
horizontalWalls[y] = [];
}
if (horizontalWalls[y].indexOf(x) === -1) {
horizontalWalls[y].push(x);
}
} else if (dY === 1) {
if (horizontalWalls[y + 1] === undefined) {
horizontalWalls[y + 1] = [];
}
if (horizontalWalls[y + 1].indexOf(x) === -1) {
horizontalWalls[y + 1].push(x);
}
}
}
}
}
});
});
const result: IRoomWall[] = [];
const walls = [verticalWalls, horizontalWalls];
for (let i = 0; i < 2; i++) {
const wallList = walls[i];
for (let a in wallList) {
if (!wallList.hasOwnProperty(a)) {
return;
}
wallList[a].sort((a: number, b: number) => {
return a - b;
});
let startPos = wallList[a][0];
const positionArray = (i === 1 ? [startPos, parseInt(a)] : [parseInt(a), startPos]);
if (wallList[a].length === 1) {
result.push({
startPos: positionArray,
horizontal: i === 1,
length: 1
});
} else {
let consecutiveCount = 1;
for (let b = 0; b < wallList[a].length - 1; b++) {
if (b + 1 === wallList[a].length - 1) {
if (wallList[a][b + 1] - wallList[a][b] > 1) {
result.push({
startPos: (i === 1 ? [startPos, parseInt(a)] : [parseInt(a), startPos]),
horizontal: i === 1,
length: consecutiveCount
});
consecutiveCount = 0;
startPos = wallList[a][b + 1];
}
result.push({
startPos: (i === 1 ? [startPos, parseInt(a)] : [parseInt(a), startPos]),
horizontal: i === 1,
length: consecutiveCount + 1
});
break;
} else if (wallList[a][b + 1] - wallList[a][b] > 1) {
result.push({
startPos: (i === 1 ? [startPos, parseInt(a)] : [parseInt(a), startPos]),
horizontal: i === 1,
length: consecutiveCount
});
startPos = wallList[a][b + 1];
consecutiveCount = 0;
}
consecutiveCount++;
}
}
}
}
return result;
}
/**
* Generates a list of all valid tile positions around the currently selected room under construction.
*
* @param rooms The rooms that already exist in the model
* @param selectedTiles The tiles that the user has already selected to form a new room
* @returns {Array} A 2D list of tile positions that are valid next tile choices.
*/
public static deriveValidNextTilePositions(rooms: IRoom[], selectedTiles: ITile[]): IGridPosition[] {
const result = [], newPosition = {x: 0, y: 0};
let isSurroundingTile;
selectedTiles.forEach((tile: ITile) => {
const x = tile.position.x, y = tile.position.y;
for (let dX = -1; dX <= 1; dX++) {
for (let dY = -1; dY <= 1; dY++) {
if (Math.abs(dX) === Math.abs(dY)) {
continue;
}
newPosition.x = x + dX;
newPosition.y = y + dY;
isSurroundingTile = true;
selectedTiles.forEach((otherTile: ITile) => {
if (otherTile.position.x === newPosition.x && otherTile.position.y === newPosition.y) {
isSurroundingTile = false;
}
});
if (isSurroundingTile && !Util.checkRoomCollision(rooms, newPosition)) {
result.push({x: newPosition.x, y: newPosition.y});
}
}
}
});
return result;
}
/**
* Determines whether a position is contained in a list of tiles.
*
* @param list A list of tiles
* @param position A position
* @returns {boolean} Whether the list contains the position
*/
public static tileListContainsPosition(list: ITile[], position: IGridPosition): boolean {
return Util.tileListPositionIndexOf(list, position) !== -1;
}
/**
* Determines the index of a position in a list of tiles.
*
* @param list A list of tiles
* @param position A position
* @returns {number} Index of the position in the list of tiles, -1 if not found
*/
public static tileListPositionIndexOf(list: ITile[], position: IGridPosition): number {
let index = -1;
for (let i = 0; i < list.length; i++) {
const element = list[i];
if (position.x === element.position.x && position.y === element.position.y) {
index = i;
break;
}
}
return index;
}
/**
* Determines whether a position is contained in a list of positions.
*
* @param list A list of positions
* @param position A position
* @returns {boolean} Whether the list contains the position
*/
public static positionListContainsPosition(list: IGridPosition[], position: IGridPosition): boolean {
return Util.positionListPositionIndexOf(list, position) !== -1;
}
/**
* Determines the index of a position in a list of positions.
*
* @param list A list of positions
* @param position A position
* @returns {number} Index of the position in the list of tiles, -1 if not found
*/
public static positionListPositionIndexOf(list: IGridPosition[], position: IGridPosition): number {
let index = -1;
for (let i = 0; i < list.length; i++) {
const element = list[i];
if (position.x === element.x && position.y === element.y) {
index = i;
break;
}
}
return index;
}
/**
* Determines the index of a room that is colliding with a given grid tile.
*
* Returns -1 if no collision is found.
*
* @param rooms An array of Room objects that should be checked for collisions
* @param position A position
* @returns {number} The index of the room in the rooms list if found, else -1
*/
public static roomCollisionIndexOf(rooms: IRoom[], position: IGridPosition): number {
let index = -1;
for (let i = 0; i < rooms.length; i++) {
const room = rooms[i];
if (Util.tileListContainsPosition(room.tiles, position)) {
index = i;
break;
}
}
return index;
}
/**
* Checks whether a tile location collides with an existing room.
*
* @param rooms A list of rooms to be analyzed
* @param position A position
* @returns {boolean} Whether the tile lies in an existing room
*/
public static checkRoomCollision(rooms: IRoom[], position: IGridPosition): boolean {
return Util.roomCollisionIndexOf(rooms, position) !== -1;
}
/**
* Calculates the minimum, center, and maximum of a list of rooms in stage coordinates.
*
* This center is calculated by averaging the most outlying tiles of all rooms.
*
* @param rooms The rooms to be analyzed
* @returns {IBounds} The coordinates of the minimum, center, and maximum
*/
public static calculateRoomListBounds(rooms: IRoom[]): IBounds {
const min = [Number.MAX_VALUE, Number.MAX_VALUE];
const max = [-1, -1];
rooms.forEach((room: IRoom) => {
room.tiles.forEach((tile: ITile) => {
if (tile.position.x < min[0]) {
min[0] = tile.position.x;
}
if (tile.position.y < min[1]) {
min[1] = tile.position.y;
}
if (tile.position.x > max[0]) {
max[0] = tile.position.x;
}
if (tile.position.y > max[1]) {
max[1] = tile.position.y;
}
});
});
max[0]++;
max[1]++;
const gridCenter = [min[0] + (max[0] - min[0]) / 2.0, min[1] + (max[1] - min[1]) / 2.0];
return {
min: min,
center: gridCenter,
max: max
};
}
/**
* Does the same as 'calculateRoomListBounds', only for one room.
*
* @param room The room to be analyzed
* @returns {IBounds} The coordinates of the minimum, center, and maximum
*/
public static calculateRoomBounds(room: IRoom): IBounds {
return Util.calculateRoomListBounds([room]);
}
public static calculateRoomNamePosition(room: IRoom): IRoomNamePos {
const result: IRoomNamePos = {
topLeft: {x: 0, y: 0},
length: 0
};
// Look for the top-most tile y-coordinate
let topMin = Number.MAX_VALUE;
room.tiles.forEach((tile: ITile) => {
if (tile.position.y < topMin) {
topMin = tile.position.y;
}
});
// If there is no tile at the top, meaning that the room has no tiles, exit
if (topMin === Number.MAX_VALUE) {
return null;
}
// Find the left-most tile at the top and the length of its adjacent tiles to the right
const topTilePositions: number[] = [];
room.tiles.forEach((tile: ITile) => {
if (tile.position.y === topMin) {
topTilePositions.push(tile.position.x);
}
});
topTilePositions.sort();
const leftMin = topTilePositions[0];
let length = 0;
while (length < topTilePositions.length && topTilePositions[length] - leftMin === length) {
length++;
}
result.topLeft.x = leftMin;
result.topLeft.y = topMin;
result.length = length;
return result;
}
/**
* Analyzes an array of objects and calculates its fill ratio, by looking at the number of elements != null and
* comparing that number to the array length.
*
* @param inputList The list to be analyzed
* @returns {number} A fill ratio (between 0 and 1), representing the relative amount of objects != null in the list
*/
public static getFillRatio(inputList: any[]): number {
let numNulls = 0;
if (inputList.length === 0) {
return 0;
}
inputList.forEach((element: any) => {
if (element == null) {
numNulls++;
}
});
return (inputList.length - numNulls) / inputList.length;
}
/**
* Calculates the energy consumption ration of the given rack.
*
* @param rack The rack of which the power consumption should be analyzed
* @returns {number} The energy consumption ratio
*/
public static getEnergyRatio(rack: IRack): number {
let energySum = 0;
rack.machines.forEach((machine: IMachine) => {
if (machine === null) {
return;
}
let machineConsumption = 0;
let nodeUnitList: INodeUnit[] = machine.cpus.concat(machine.gpus);
nodeUnitList = nodeUnitList.concat(machine.memories);
nodeUnitList = nodeUnitList.concat(machine.storages);
nodeUnitList.forEach((unit: INodeUnit) => {
machineConsumption += unit.energyConsumptionW;
});
energySum += machineConsumption;
});
return energySum / rack.powerCapacityW;
}
/**
* Parses date-time expresses of the form YYYY-MM-DDTHH:MM:SS and returns a parsed object.
*
* @param input A string expressing a date and a time, in the above mentioned format
* @returns {IDateTime} A DateTime object with the parsed date and time information as content
*/
public static parseDateTime(input: string): IDateTime {
const output: IDateTime = {
year: 0,
month: 0,
day: 0,
hour: 0,
minute: 0,
second: 0
};
const dateAndTime = input.split("T");
const dateComponents = dateAndTime[0].split("-");
output.year = parseInt(dateComponents[0], 10);
output.month = parseInt(dateComponents[1], 10);
output.day = parseInt(dateComponents[2], 10);
const timeComponents = dateAndTime[1].split(":");
output.hour = parseInt(timeComponents[0], 10);
output.minute = parseInt(timeComponents[1], 10);
output.second = parseInt(timeComponents[2], 10);
return output;
}
public static formatDateTime(input: IDateTime) {
let date;
const currentDate = new Date();
date = Util.addPaddingToTwo(input.day) + "/" +
Util.addPaddingToTwo(input.month) + "/" +
Util.addPaddingToTwo(input.year);
if (input.year === currentDate.getFullYear() &&
input.month === currentDate.getMonth() + 1) {
if (input.day === currentDate.getDate()) {
date = "Today";
} else if (input.day === currentDate.getDate() - 1) {
date = "Yesterday";
}
}
return date + ", " +
Util.addPaddingToTwo(input.hour) + ":" +
Util.addPaddingToTwo(input.minute);
}
public static getCurrentDateTime(): string {
const currentDate = new Date();
return currentDate.getFullYear() + "-" + Util.addPaddingToTwo(currentDate.getMonth() + 1) + "-" +
Util.addPaddingToTwo(currentDate.getDate()) + "T" + Util.addPaddingToTwo(currentDate.getHours()) + ":" +
Util.addPaddingToTwo(currentDate.getMinutes()) + ":" + Util.addPaddingToTwo(currentDate.getSeconds());
}
/**
* Removes all populated object properties from a given object, and returns a copy without them.
*
* An exception of such an object property is made in the case of a position object (of type GridPosition), which
* is copied over as well.
*
* Does not manipulate the original object in any way, except if your object has quantum-like properties, which
* change upon inspection. In such a case, I'm afraid that this method can do little for you.
*
* @param object The input object
* @returns {any} A copy of the object without any populated properties (of type object).
*/
public static packageForSending(object: any) {
const result: any = {};
for (let prop in object) {
if (object.hasOwnProperty(prop)) {
if (typeof object[prop] !== "object") {
result[prop] = object[prop];
} else {
if (object[prop] instanceof Array) {
if (object[prop].length === 0 || !(object[prop][0] instanceof Object)) {
result[prop] = [];
for (let i = 0; i < object[prop].length; i++) {
result[prop][i] = object[prop][i];
}
}
}
if (object[prop] != null && object[prop].hasOwnProperty("x") && object[prop].hasOwnProperty("y")) {
result["positionX"] = object[prop].x;
result["positionY"] = object[prop].y;
}
}
}
}
return result;
}
public static addPaddingToTwo(integer: number): string {
if (integer < 10) {
return "0" + integer.toString();
} else {
return integer.toString();
}
}
public static convertSecondsToFormattedTime(seconds: number): string {
let hour = Math.floor(seconds / 3600);
let minute = Math.floor(seconds / 60) % 60;
let second = seconds % 60;
hour = isNaN(hour) ? 0 : hour;
minute = isNaN(minute) ? 0 : minute;
second = isNaN(second) ? 0 : second;
return this.addPaddingToTwo(hour) + ":" +
this.addPaddingToTwo(minute) + ":" +
this.addPaddingToTwo(second);
}
public static determineLoadIntensityLevel(loadFraction: number): IntensityLevel {
if (loadFraction < 0.25) {
return IntensityLevel.LOW;
} else if (loadFraction < 0.5) {
return IntensityLevel.MID_LOW;
} else if (loadFraction < 0.75) {
return IntensityLevel.MID_HIGH;
} else {
return IntensityLevel.HIGH;
}
}
public static convertIntensityToColor(intensityLevel: IntensityLevel): string {
if (intensityLevel === IntensityLevel.LOW) {
return Colors.SIM_LOW;
} else if (intensityLevel === IntensityLevel.MID_LOW) {
return Colors.SIM_MID_LOW;
} else if (intensityLevel === IntensityLevel.MID_HIGH) {
return Colors.SIM_MID_HIGH;
} else if (intensityLevel === IntensityLevel.HIGH) {
return Colors.SIM_HIGH;
}
}
/**
* Gives the sentence-cased alternative for a given string.
*
* @example Input: TEST, Output: Test
*
* @param input The input string
* @returns {any} The sentence-cased string
*/
public static toSentenceCase(input: string): string {
if (input === undefined || input === null) {
return undefined;
}
if (input.length === 0) {
return "";
}
return input[0].toUpperCase() + input.substr(1).toLowerCase();
}
/**
* Sort a list of authorizations based on the levels of authorizations.
*
* @param list The list to be sorted (in-place)
*/
public static sortAuthorizations(list: IAuthorization[]): void {
list.sort((a: IAuthorization, b: IAuthorization): number => {
return this.authorizationLevels.indexOf(a.authorizationLevel) -
this.authorizationLevels.indexOf(b.authorizationLevel);
});
}
/**
* Returns an array containing all numbers of a range from 0 to x (including x).
*/
public static range(x: number): number[] {
return Array.apply(null, Array(x + 1)).map((_, i) => {
return i.toString();
})
}
}