| Age | Commit message (Collapse) | Author |
|
* Updated the FlowDistributor to work in more cases and be more performant.
* Removed old FlowDistributor
|
|
* Restructured opendc-simulator-flow.
Renamed Multiplexer to FlowDistributor.
* spotless applied
* Added FlowDistributor topologies back
|
|
* Fixed the Multiplexer.java to properly divide the supply over the different consumers.
Fixed a bug where fragments were being loaded in reversed order.
* Optimized the Multiplexer.java, by only updating the supply of the consumer that updated its demand when possible.
|
|
* Connected the cpu power model given by the topology.json to SimCpu.java
* ran spotless
|
|
|
|
* Fixed a small bug making the power source not update energy usage properly
* small update to the test
|
|
finishing. (#264)
|
|
|
|
finished (#259)
|
|
* Added power sources to OpenDC.
In the current form each Cluster has a single power source that is connected to all hosts in that cluster
* Added power sources to OpenDC.
In the current form each Cluster has a single power source that is connected to all hosts in that cluster
* Ran spotless Kotlin and Java
|
|
* Updated tests
Changed all floats into doubles to have consistency over the whole framework
Made a small update to the multiplexer to better push through supply and demand
Fixed small typo
Updated M3SA paths.
fixed merge conflicts
Removed unused components. Updated tests.
Improved checkpointing model
Improved model, started with SimPowerSource
implemented FailureModels and Checkpointing
First working version
midway commit
first update
All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability.
* Updated test memory
|
|
* Removed unused components. Updated tests.
Improved checkpointing model
Improved model, started with SimPowerSource
implemented FailureModels and Checkpointing
First working version
midway commit
first update
All simulation are now run with a single CPU and single MemoryUnit. multi CPUs are combined into one. This is for performance and explainability.
* fixed merge conflicts
* Updated M3SA paths.
* Fixed small typo
|
|
CPUs are combined into one. This is for performance and explainability. (#255)
|
|
* Added a max failure for tasks. If tasks fail more times, they get cancelled
* Added maxNumFailures to the frontend
* Updated tests
|
|
* Updated the checkpointing system to use SimTrace. The checkpoint model can now also scale, which means the interval between checkpoints can increase or decrease over time.
* spotless kotlin
* Fixed tests
* spotless apply
|
|
* Started on reimplementing the SimTrace implementation
* updated trace format. Fragments now do not have a deadline, but a duration. The Fragments are executed in order.
|
|
* Updated SimTrace to use a single ArrayDeque instead of three separate lists for deadline, cpuUsage, and coreCount
* Renamed input files to tasks.parquet and fragments.parquet. Renamed server to task. OpenDC nows exports tasks.parquet instead of server.parquet
|
|
* Fixed a problem which caused the CPU limit to be much lower than it should be.
AllocationPolicy is now properly exposed to the user
* Fixed tests
* spotless kotlin
|
|
|
|
|
|
* Started with the carbon trace implementation
* Moved the carbon trace system to the proper folders
|
|
|
|
* Initial commit
* Implemented a new systems of defining and running scenarios / portfolios. Scenarios and Portfolios can now be defined using JSON files similar to topologies. This allows user to define experiments without changing any KotLin code.
* Ran spotlessApply
|
|
* Updated the topology format to JSON. Updated TopologyReader.kt to handle JSON filed. Added documentation for the new format.
* applied spotless kotlin
* small update
* Updated for spotless apply
* Updated for spotless apply
|
|
* Updated all package versions including kotlin. Updated all web-server tests to run.
* Changed the java version of the tests. OpenDC now only supports java 19.
* small update
* test update
* new update
* updated docker version to 19
* updated docker version to 19
|
|
* Updated metrics to consistently be ms
* Updated metrics to consistently be ms
* Updated metric documentation on the site
* Updated some tests to work with the updated metrics
|
|
* Updated metrics and parquet output
* fixed typos
|
|
* removed experiment-compute and integrated all components into opendc-compute
* updated workflow gradle file
* removed unneeded code
|
|
* made sure all tests run
* fixed typo
* executed spotlessApply
* added back web-server tests
* updated SimTraceWorkloadTest
* commented CapelinRunneer and GreenifierRunner tests
* commented one SimTraceWorkloadTest
* altered codecov execution
* changed codecov
|
|
|
|
This change inlines the implementation of the compute service into the
`ComputeService` interface. We do not intend to provide multiple
implementations of the service. In addition, this approach makes more
sense for a Java implementation.
|
|
This change updates the API interface of the OpenDC Compute service to
not suspend execution using Kotlin Coroutines.
The suspending modifiers were introduced in case the ComputeClient would
communicate with the service over a network connection. However, the main
use-case has been together with the ComputeService, where the suspending
modifiers only frustrate the user experience when writing experiments.
Furthermore, with the advent of Project Loom, it is not necessarily a
problem to block the (virtual) thread during network communications.
|
|
This change replaces the use of `CoroutineContext` for passing the
`SimulationDispatcher` across the different modules of OpenDC by the
lightweight `Dispatcher` interface of the OpenDC common module.
|
|
This change updates the `SimulationScheduler` class to implement the
`Dispatcher` interface from the OpenDC Common module, so that OpenDC
modules only need to depend on the common module for dispatching future
task (possibly in simulation).
|
|
This change updates the modules of OpenDC to always accept
the `InstantSource` interface as source of time. Previously we used
`java.time.Clock`, but this class is bound to a time zone which does not
make sense for our use-cases.
Since `java.time.Clock` implements `java.time.InstantSource`, it can be
used in places that require an `InstantSource` as parameter. Conversion
from `InstantSource` to `Clock` is also possible by invoking
`InstantSource#withZone`.
|
|
This change updates the modules of OpenDC to always accept
the `RandomGenerator` interface as source of randomness. This interface
is implemented by the slower `java.util.Random` class, but also by the
faster `java.util.SplittableRandom` class
|
|
This change updates the interface of `SimWorkload` to support
snapshotting workloads. We introduce a new method `snapshot()` to this
interface which returns a new `SimWorkload` that can be started at a
later point in time and on another `SimMachine`, which continues
progress from the moment the workload was snapshotted.
|
|
This change updates the `Guest` class implementation to use a static
logger field instead of allocation a new logger for every guest.
|
|
This change updates the `Host` interface to remove the suspend modifiers
to the start, stop, spawn, and delete methods of this interface. We now
assume that the host immediately launches the guest on invocation of
this method.
|
|
This change updates `SimHost` to support modeling the time and resource
consumption it takes to boot the host. The boot procedure is modeled as a
`SimWorkload`.
|
|
This change updates the implementation of `SimHost` to use workload
chaining for modelling boot delays. Previously, this was implemented by
sleeping 1 millisecond using Kotlin coroutines. With this change, we
remove the need for coroutines and instead use the `SimDurationWorkload`
to model the boot delay.
In the future, we envision a user-supplied stochastic boot model to
model the boot delay for VM instances.
|
|
This change updates the interface of `SimMachine#startWorkload` to
introduce a parameter `completion` that is invoked when the workload
completes either succesfully or due to failure.
This functionality has often been implemented by wrapping a
`SimWorkload` and catching its exceptions. However, since this
functionality is used in all usages of `SimMachine#startWorkload` we
instead embed it into `SimMachine` itself.
|
|
This change re-implements the OpenDC compute simulator framework using
the new flow2 framework for modelling multi-edge flow networks. The
re-implementation is written in Java and focusses on performance and
clean API surface.
|
|
This change updates the build configuration to use Spotless for code
formating of both Kotlin and Java.
|
|
This change updates the repository to remove the use of wildcard imports
everywhere. Wildcard imports are not allowed by default by Ktlint as
well as Google's Java style guide.
|
|
This change renames the method `runBlockingSimulation` to
`runSimulation` to put more emphasis on the simulation part of the
method. The blocking part is not that important, but this behavior is
still described in the method documentation.
|
|
This change updates the implementation of `SimulationDispatcher` to use
a (possibly user-provided) `SimulationScheduler` for managing the
execution of the simulation and future tasks.
|
|
This change simplifies the SimHypervisor class into a single
implementation. Previously, it was implemented as an abstract class with
multiple implementations for each multiplexer type. We now pass the
multiplexer type as parameter to the SimHypervisor constructor.
|
|
This change updates the virtual machine performance interference model
so that the interference domain can be constructed independently of the
interference profile. As a consequence, the construction of the topology
now does not depend anymore on the interference profile.
|
|
This change updates the constructor of SimHost to receive a
`SimBareMetalMachine` and `SimHypervisor` directly instead of
construction these objects itself. This ensures better testability and
also simplifies the constructor of this class, especially when future
changes to `SimBareMetalMachine` or `SimHypervisor` change their
constructors.
|